Electronic Supplementary Information

Design and Synthesis of β-Multi-Substituted Push-Pull Porphyrins Jing Chen,^a Ke-Lai Li,^b Yong Guo,^a Chao Liu,^a Can-Cheng Guo^{*b} and Qing-Yun Chen^{*a}

^a Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. of China. Fax (+86) 21-64166128; Tel: (+86) 021-54925196 E-mail: chenqy@sioc.ac.cn
^b College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. of China

1. General Procedures (S2)

2. Experimental Procedures (S3-S5)

3. Figure S1 ¹H NMR of porphyrin **1** and **3** at 25 °C, 0 °C, -33 °C, and -60 °C (S6-S8)

4. Figure S2. UV/Vis absorption spectra of the porphyrins TPP, 1, 2 and 3 measured in dichloromethane. (S8)

5. Figure S3 Cyclic voltammograms of porphyrins 1, 2 and 3 in CH₂Cl₂ with 0.1 M Bu₄NPF₆ at 25 °C (S9-S11)

6. Spectral data for target compounds 1, 2 and 3 (S12-S16)

7. Geometry for target compounds **1**, **2** and **3** by using the density functional theory (DFT) with the B3LYP/6-31G(d) basic set implemented in the Gaussian 09 program package (S17-S19)

1. General Procedures

¹H NMR spectra were recorded on Varian 300MHz or 400MHz spectrometers with TMS as an internal standard (negative for upfield). ¹⁹F NMR spectra were recorded on a Varian 300MHz spectrometer. MALDI-MS and MALDI-HRMS were recorded on a Bruker APEX_{III} FTICRMS mass spectrometer. UV-vis spectra were recorded on a Varian Cary 100 spectrometer. Elemental analyses were obtained on a Perkin-Elmer 2400 Series II Elemental Analyzer. Cyclic voltammetry measurements were carried out in a 0.1 M Bu₄NPF₆ solution in CH₂Cl₂ at room temperature using a scan rate of 100 mV s⁻¹ under nitrogen on a CHI610D Instrument, with a platinum-carbon working electrode, a saturated calomel electrode, and a platinum wire as the auxiliary electrode. Column chromatography was performed using silica gel (mesh 300-400).

2. Experimental Procedures

Preparation of 7,8-dibromo-17,18-dihydroxy-5,10,15,20-tetraphenylchlorin (6)

7,8-dihydroxy-5,10,15,20-tetraphenylchlorin (**5**) (100 mg, 0.15 mmol), NBS (61 mg, 0.31 mmol) was added to a 100 mL flask. The flask was then evacuated and backfilled with nitrogen (three cycles). CH₂Cl₂ (20 mL) was added with a syringe. The resulting solution was stirred for 4 hours in an ice-water bath under nitrogen. Et₃N (1 mL) was added and then quickly filtered through a short silica plug (300-400 mesh, eluting with CH₂Cl₂). The filtrate was purified by flash chromatography (silica gel, 300-400 mesh, PE-CH₂Cl₂ as eluent) to yield products **6** (118 mg, 95% yield). ¹H NMR (300 MHz, CDCl₃, TMS) δ 8.57 (d, *J* = 4.7 Hz, 2 H, β -H), 8.22 (d, *J* = 4.7 Hz, 2 H, β -H), 8.19-7.65 (m, 20 H, Ph-H), 6.35 (s, 2 H, β -H, OH), 3.02 (s, 2 H), -1.72 (s, 2 H, NH); UV–vis (CH₂Cl₂) λ_{max} (relative intensity) 408(0.84), 516(0.07), 545(0.07), 592 (0.03), 644(0.13) nm; HRMS (MALDI) calc'd for C₄₄H₃₁N₄O₂Br₂ [M+H]⁺ 805.0809, found 805.0808.

Preparation of 7,8-dibromo-17,18-dimethoxy-5,10,15,20-tetraphenylchlorin (7)

6 (95 mg, 0.12 mmol) was added to a 100 mL flask. The flask was then evacuated and backfilled with nitrogen (three cycles). THF (20 mL) was added with a syringe. NaH (35 mg, 1.2 mmol) was added in several portions. The reaction mixture was stirred for 30 min. Then 183 μ L CH₃I was added with a syringe. The resulting solution continued to be stirred for 3h. The reaction was quenched with water, and the aqueous layer was extracted with CH₂Cl₂ (3 x 20 mL). The combined organic layers were quickly filtered through a short silica plug (300-400 mesh, eluting with CH₂Cl₂). The filtrate was purified by flash chromatography (silica gel, 300-400 mesh, PE-CH₂Cl₂ as eluent) to yield the products **7** (87 mg, 88% yield) ¹H NMR (300 MHz, CDCl₃, TMS) δ 8.56 (d, *J* = 5.7 Hz, 2 H, β -H), 8.19 -7.61 (m, 22 H, β -,Ph-H), 6.00 (s, 2 H, β -H, OH), 2.98 (s, 6 H, OCH₃), -1.81 (s, 2 H, NH); UV– vis (CH₂Cl₂) $\lambda_{max}(\varepsilon)$ 426 (8.7×10⁴), 528 (9.4×10³), 594 (6.9×10³), 644 (7.2×10³) nm; HRMS (MALDI) calc'd for C₄₆H₃₅Br₂N₄O₂ [M+H]⁺ 833.1097, found 833.1121.

Preparation of 7,8-dibromo-17,18-dimethoxy-5,10,15,20-tetraphenylporphyrin (1)

7 (28 mg , 0.12 mmol), DDQ (30 mg, 0.13 mmol), and 10 ml CHCl₃ was added to a 50 mL flask. The resulting solution was stirred and heated under reflux for 10 h. The reaction mixture was quickly filtered through a short silica plug (300-400 mesh, eluting with CH₂Cl₂). The filtrate was purified by flash chromatography (silica gel, 300-400 mesh, PE-CH₂Cl₂ as eluent) to yield the products **1** (28 mg, 92% yield). ¹H NMR (300 MHz, CDCl₃, TMS) δ 8.78 (d, *J* = 4.6 Hz , 2 H , β -H), 8.63 (d, *J* = 4.6 Hz , 2 H, β -H), 8.18 (d, *J* = 6.4 Hz, 8 H, *o*-Ph-H), 7.80-7.75 (m, 12 H, *m*,*p*-Ph-H), 3.76 (s, 6 H, OCH₃), -2.97 (s, 2 H, NH). UV–vis (CH₂Cl₂) λ_{max} (ϵ) 425 (6.8×10⁵), 524 (7.0×10⁴), 596 (3.3×10⁴), 663 (3.3×10⁴) nm; HRMS (MALDI) calc'd for C₄₆H₃₃Br₂N₄O₂ [M+H]⁺ 831.0967, found 831.0965.

Preparation of Nickel (II) 7,8-dibromo-17,18-dimethoxy-5,10,15,20-tetraphenylporphyrin (8)

yield 100%. ¹H NMR (400 MHz, CDCl₃, TMS) δ 8.65 (d, J = 5.1 Hz, 2 H , β -H), 8.53 (d, J = 5.0 Hz, 2 H , β -H), 7.90-7.84 (m, 8 H, o-Ph-H), 7.65-7.62 (m, 12 H, *m*,*p*-Ph-H), 3.71 (s, 6 H, OCH₃); HRMS (MALDI) calc'd for C₄₆H₃₀Br₂N₄O₂Ni [M]⁺ 886.0079, found 886.0084.

Preparation of Copper(II) 7,8-dibromo-17, 18-dimethoxyl-5, 10, 15, 20-tetraphenylporphyrin (9)

1 (37 mg , 0.044 mmol), copper acetate tetrahydrate (5 mg, 0.44 mmol), and 10 ml DMF was added to a 50 mL flask. The resulting solution was stirred and heated under reflux for 1 h. To the cooled reaction mixture, CH₂Cl₂ (20 mL) and H₂O (20 mL) were added. The organic layer was washed with water and then quickly filtered through a short silica plug (300-400 mesh, eluting with CH₂Cl₂). The filtrate was concentrate to give the products **9** (39 mg, 100% yield). UV–vis (CH₂Cl₂): λ_{max} (ϵ) 421 (1.4×10⁵), 522 (4.8×10³), 545 (1.1×10⁴), 594 (3.4×10³), 662 (2.6×10³) nm HRMS (MALDI) calc'd for C₄₆H₃₀N₄O₂Br₂Cu [M]⁺ 891.0032, found 891.0026.

Preparation of Copper(II) 7,8-dimethoxy-17,18-ditrifluoromethyl-5,10,15,20-tetraphenylporphyrin (10)

9 (22 mg , 0.025 mmol), $Pd_2(dba)_3$ (2 mg, 0.002 mmol), and CuI (47 mg, 0.25 mmol) was added to a 50 mL flask. The flask was then evacuated and backfilled with nitrogen (three cycles). DMF (20 mL) and FSO₂CF₂COOMe (31 µl, 0.25 mmol) were added with a syringe. The resulting solution was stirred and heated under 100 °C for 10 h. To the cooled reaction mixture, CH₂Cl₂ (40 mL) and H₂O (40 mL) were added. The organic layer was washed with water and then quickly filtered through a short silica plug (300-400 mesh, eluting with CH₂Cl₂). The filtrate was purified by flash chromatography (silica gel, 300-400 mesh, PE- CH₂Cl₂ as eluent) to yield the products **10** (21 mg, 98% yield). HRMS (MALDI) calc'd for C₄₈H₃₀N₄O₂F₂Cu [M]⁺ 871.1554, found 871.1564.

Preparation of 7,8-dimethoxy-17,18-ditrifluoromethyl-5,10,15,20-tetraphenylporphyrin (2)

10 (21 mg , 0.024 mmol) and CH₂Cl₂ (10 mL) was added to a 50 mL flask. Then the admixed acids (H₂SO₄:CF₃COOH = 4:1, 2 mL) was slowly added in the solution. The reaction was monitored by TLC. The reaction was quenched with water when **10** disappeared. The aqueous layer was extracted with CH₂Cl₂. The organic layer was washed with water and then quickly filtered through a short silica plug (300-400 mesh, eluting with CH₂Cl₂). The filtrate was purified by flash chromatography (silica gel, 300-400 mesh, PE-CH₂Cl₂ as eluent) to yield the products **2** (10 mg, 51% yield). ¹H NMR (300 MHz, CDCl₃, TMS) δ 8.61 (d, *J* = 4.6 Hz, 2 H, β -H), 8.32 (d, *J* = 4.6 Hz, 2 H, β -H), 8.22 (d, *J* = 6.8 Hz, 4 H, *o*-Ph-H), 8.15 (d, *J* = 6.9 Hz, 4 H, *o*-Ph-H), 7.77-7.69 (m, 12 H, *m*,*p*-Ph-H), 3.67 (s, 6 H, OCH₃), -1.44 (s, 2 H, NH); ¹⁹F NMR (282 MHz, CDCl₃) δ -48.9 (s, 6 F, CF₃); UV–vis (CH₂Cl₂): λ_{max} (ϵ) 446 (3.4×10⁵), 551 (3.5×10⁴), 718 (4.1×10⁴) nm; HRMS (MALDI) calc'd for C₄₈H₃₃N₄O₂ F₆[M+H]⁺ 811.2502, found 811.2525.

Preparation of Nickel (II) 7,8-dimethoxy-17-(4'-chlorooctofluorobutyl)-5,10,15,20-tetraphenylporphyrin (11)

8 (50 mg , 0.056 mmol), Pd₂(dba)₃ (5 mg, 0.005 mmol), and Cu (71 mg, 1.125 mmol) was added to a 50 mL flask. The flask was then evacuated and backfilled with nitrogen (three cycles). DMF (20 mL) and ClF₈C₄I (203 mg, 0.56 mmol) were added with a syringe. The resulting solution was stirred and heated under 100 °C for 0.5 h. To the cooled reaction mixture, CH₂Cl₂ (40 mL) and H₂O (40 mL) were added. The organic layer was washed with water and then quickly filtered through a short silica plug (300-400 mesh, eluting with CH₂Cl₂). The filtrate was purified by flash chromatography (silica gel, 300-400 mesh, PE-CH₂Cl₂ as eluent) to yield the products **11** (40 mg, 74 % yield). ¹H NMR (300 MHz, CDCl₃, TMS) δ 9.02 (s, 1 H, β -H), 8.66-8.58 (m, 3 H, β -H), 8.49 (d, 1 H, β -H), 8.06-7.53 (m, 20 H, Ph-H), 3.75 (s, 3 H, OCH₃), 3.70 (s, 3 H, OCH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -68.3 (m, 2 F, CF₂Cl), -97.5 (m, 2 F), -117.3 (m, 2 F), -119.5 (m, 2 F); HRMS (MALDI) calc'd for C₅₀H₃₁N₄O₂F₈ClNi [M]⁺ 964.1344, found 964.1356.

Preparation of Nickel (II) 7,8-dimethoxy-17,18-tetrafluorobenzo-5,10,15,20-tetraphenylporphyrin (12)

11 (90 mg, 0.093mmol), Na₂S₂O₄ (162 mg, 0.93 mmol), and K₂CO₃ (129 mg, 0.93 mmol) was added to a 50 mL flask. The flask was then evacuated and backfilled with nitrogen (three cycles). DMF (15 mL) was added with a syringe. The resulting solution was stirred and heated under 100 °C for 2 h. To the cooled reaction mixture, CH₂Cl₂ (30 mL) and H₂O (30 mL) were added. The organic layer was washed with water and then quickly filtered through a short silica plug (300-400 mesh, eluting with CH₂Cl₂). The filtrate was purified by flash chromatography (silica gel, 300-400 mesh, PE-CH₂Cl₂ as eluent) to yield the products **12** (67 mg, 85% yield). ¹H NMR (300 MHz, CDCl₃, TMS) δ 8.52 (d, *J* = 5.2 Hz, 2 H, β -H), 8.38 (d, *J* = 5.2 Hz, 2 H, β -H), 8.08-7.97 (m, 8 H, *o*-Ph-H), 7.75-7.63 (m, 12 H, *m,p*-Ph-H), 3.64 (s, 6 H, OCH₃); ¹⁹F NMR (282 MHz, CDCl₃) δ -131.3 (m, 2 F), -157.7 (m, 2 F); HRMS (MALDI) calc'd for C₅₀H₃₀N₄O₂F₄Ni [M]⁺ 852.1640, found 852.1653.

Preparation of 7,8-dimethoxy-17,18-tetrafluorobenzo-5,10,15,20-tetraphenylporphyrin (3)

12 (40 mg, 0.047 mmol) was dissolved in a 50 mL flask. A mixture of H₂SO₄ and CF₃COOH (2 mL, 4:1) was dropped into the flask slowly. The product was obtained in 40% yield (15 mg). ¹H NMR (300 MHz, CDCl₃, TMS) δ 8.73 (d , *J* = 4.8 Hz, 2 H , β -H), 8.51 (d , *J* = 4.8 Hz , 2 H, β -H), 8.35-8.23 (m, 8 H, *o*-Ph-H), 7.81-7.74 (m, 12 H, *m*,*p*-Ph-H), 3.70 (s, 6 H, OCH₃), -2.45 (s, 2 H, NH); ¹⁹F NMR (282 MHz, CDCl₃) δ -132.2 (m, 2 F), -157.3 (m, 2 F); UV– vis (CH₂Cl₂): λ_{max} (ϵ) 431 (1.8×10⁵), 527 (1.3×10⁴), 561 (3.1×10³), 607 (3.1×10³), 669 (4.8×10³) nm; HRMS (MALDI) calc'd for C₅₀H₃₃N₄O₂F₄ [M+H]⁺ 797.2517, found 797.2534.

2009185-h-213k-50a OMe Ph -60 °C R 2009185-h-240k-50a -33 °C .9 2009185-h-273k-50a 0°C 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.6 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -3.5 fl (ppm)

3. Figure S1¹H NMR of porphyrin **1** and **3** at 0 °C, -33 °C, and -60 °C.

.

4. Figure S2. UV/Vis absorption spectra of the porphyrins TPP, 1, 2 and 3 measured in dichloromethane.

5. Figure S3 Cyclic voltammograms of porphyrins **1**, **2** and **3** in CH₂Cl₂ with 0.1 M Bu₄NPF₆ at 25 °C

6. NMR spectra for target compounds 1, 2 and 3

7. Geometry for target compounds **1**, **2** and **3** by using the density functional theory (DFT) with the B3LYP/6-31G(d) basic set implemented in the Gaussian 09 program package

