Supplementary Information

Amine Intercalated Clay Surfaces for Microbial Cell Immobilization and Biosensing Applications

Bilal DEMIR^a, Muharrem SELECI^a, Didem AG^a, Serdar CEVIK^b, Esra Evrim YALCINKAYA^c, Dilek ODACI DEMIRKOL^a, Ulku ANIK^b, Suna TIMUR^a*

^aDept. of Biochemistry, Faculty of Science, Ege University, 35100 Bornova-Izmir, Turkey

^bDept. of Chemistry, Faculty of Science, Mugla Sitki Kocman University, Kotekli-Mugla, Turkey

^cDept. of Chemistry, Faculty of Science, Ege University, 35100 Bornova-Izmir, Turkey

Fig S1. TGA thermograms of Mont and TM-Mont.

Fig S2. The surface structures of TM-Mont film (Composition: 1.0 mg/mL clay in distilled water containing BSA (1.0 mg/mL) and 1.0% GA) in the absence (a) and presence of *G. oxydans* (b) with 10 000x magnification).

Fig S3. Influence of dopant agent to Mont/*G. oxydans* biosensor (0.5 mM glucose, -0.7 V, 50 mM (pH 6.5) sodium phosphate buffer and room temperature. Electrode composition is same as Fig 3).

Fig S4. Operational stability of TM-Mont/*G.oxydans* biosensor (at room temperature in 50 mM sodium phosphate buffer (pH 6.5) in FIA configuration. Electrode composition is same as Fig 3.).

Fig S5. Substrate specificity of *G. oxydans* cultivated with glucose (a) and glycerol (b) as a main carbon source. Glucose, fructose, glycerol and ethanol conc: 1.0 mM, (at -0.7 V in 50 mM sodium phosphate buffer (pH 6.5) at room temperature. Electrode composition is same as Fig 3).

Fig S6. Linearity for glucose (•) and glycerol(•) obtained by TM-Mont/*G. oxydans* biosensor [at -0.7 V and room temperature in 50 mM sodium phosphate buffer (pH 6.5), in FIA configuration. Electrode composition is same as Fig 3 except for the glycerol calibration where glycerol was used as the main carbon source in the culture medium].

_	Mont	M-Mont [*]	DM-Mont [*]	TM-Mont
Zeta Potential (mV)	-42	-34.5	-32.1	-28.1
XRD-Basal Spacing Value (A ⁰)	11.4	12.71	13.14	14.66

Table 2. Comparison of some characteristics of different amine intercalated Monts

^{*}M-Mont and DM-Mont values were purchased from previous work [27].