Supporting information

-for-

Catalytic effect of a single water molecule on atmospheric reaction of $\mathbf{H O}_{\mathbf{2}}+\mathbf{O H}$: Fact or fiction? A mechanistic and kinetic study

Tianlei Zhang ${ }^{\mathrm{a}}$ Wenliang Wang ${ }^{*, \mathrm{a}}$ Chunying Li^{b} Yongmei Du^{b} Jian Lü ${ }^{* b}$
${ }^{a}$ Key Laboratory for Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi 710062, China
${ }^{b}$ Xi'an Modern Chemistry Re search Institute, Xi'an 710065, People's Republic of China

Figures and Tables		Page
Fig. S1	Optimized geometries of all the species involved in $\mathrm{HO}_{2}+\mathrm{OH}$ reaction at the CCSD/6-311G(d,p) level.	S2
Fig. S2	Optimized geometries of all the species involved in the reaction of $\mathrm{HO}_{2}+\mathrm{OH}$ with a water molecule at the CCSD/6-311G(d,p) level.	S3-S4
Fig. S3	Pictorial representation of (a) naked formation process of $\mathrm{HO}_{3} \mathrm{H},{ }^{1} \mathrm{O}_{2}$ and ${ }^{3} \mathrm{O}_{2}$; (b) water-catalyzed process of $\mathrm{HO}_{3} \mathrm{H}^{1} \mathrm{O}_{2}$ and ${ }^{3} \mathrm{O}_{2}$ formation in $\mathrm{HO}_{2}+\mathrm{OH}$ reaction	S5
Table S1	T_{1} diagnostic values and spin contamination for the species that involved in $\mathrm{HO}_{2}+\mathrm{OH}$ reaction without and with a water molecule	S6
Table S2	The electronic energies (E) and the relative energies (ΔE) (in $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$) for the $\mathrm{HO}_{2}+\mathrm{OH}$ reaction at the CASSCF/aug-cc-pV5Z//CCSD/6-311G(d,p) level	S6
Table S3	Rate constants $\left(\mathrm{cm}^{3} \cdot\right.$ molecule $\left.{ }^{-1} \cdot \mathrm{~s}^{-1}\right)$ for the process of $\mathrm{HO}_{3} \mathrm{H}$ formation without and with a water molecule	S7
Table S4	Kinetic results for the process of ${ }^{1} \mathrm{O}_{2}$ formation occurring through $\mathrm{HO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}+\mathrm{OH}$ and $\mathrm{HO}_{2}+\mathrm{HO} \cdots \mathrm{H}_{2} \mathrm{O}$ reactions.	S7
Table S5	Kinetic results for the process of ${ }^{3} \mathrm{O}_{2}$ formation occurring through $\mathrm{HO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}+\mathrm{OH}$ and $\mathrm{HO}_{2}+\mathrm{HO} \cdots \mathrm{H}_{2} \mathrm{O}$ reactions.	S8

[^0]

Fig. S1 Optimized geometries of all the species that involved in the $\mathrm{HO}_{2}+\mathrm{OH}$ reaction at the CCSD/6-311G(d,p) level. Bond lengths are in angstroms and angles are in degrees. The values with parentheses were the experimental data from the NIST chemistry webbook; ${ }^{\text {a }}$ The values calculated at CASSCF/6-311G(d,p) level, ${ }^{\text {b }}$ The values calculated at MP2/6-31G(d,p) level and obtained from reference 1 and 2.

$$
\mathrm{H}_{2} \mathrm{O} \mathrm{H}
$$

TSW4

TSW6

IMW7
TSW4a

H3

$\mathrm{d}(\mathrm{O} 2-\mathrm{H} 1-\mathrm{O} 4-\mathrm{H} 3)=-115.2$
TSW7

$\mathrm{d}(\mathrm{O} 2-\mathrm{H} 1-\mathrm{O} 4-\mathrm{H} 3)=120.5$
TSW7a

IMW8

TSW8

Fig. S2 Optimized geometries of all the species that involved in the reaction of $\mathrm{HO}_{2}+\mathrm{OH}$ with a water molecule at the CCSD/6-311G(d,p) level. Bond lengths are in angstroms and angles are in degrees.
a) Naked reaction
i)

direct hydrogen atom abstraction
ii)

b) water-catalyzed reaction
i)

ii)

iii)

Fig. S3 Pictorial representation of (a) naked processes of $\mathrm{HO}_{3} \mathrm{H},{ }^{1} \mathrm{O}_{2}$ and ${ }^{3} \mathrm{O}_{2}$ formation; (b) water-catalyzed processes of $\mathrm{HO}_{3} \mathrm{H},{ }^{1} \mathrm{O}_{2}$ and ${ }^{3} \mathrm{O}_{2}$ formation in the $\mathrm{HO}_{2}+\mathrm{OH}$ reaction

Table S1 T_{1} diagnostic values and spin contamination for the species that involved in the HO_{2} +HO reaction without and with a water molecule

Species	$T_{1}\left(\left\langle\mathrm{~S}^{2}\right\rangle\right)$	Species	$T_{1}\left(\left\langle\mathrm{~S}^{2}\right\rangle\right)$	Species	$T_{1}\left(\left\langle\mathrm{~S}^{2}\right\rangle\right)$
HO_{2}	$0.030(0.7501)$	OH	$0.010(0.7500)$	$\mathrm{H}_{2} \mathrm{O}$	$0.010(0.0000)$
${ }^{1} \mathrm{O}_{2}$	$0.015(0.0000)$	${ }^{3} \mathrm{O}_{2}$	$0.017(2.0006)$	$\mathrm{HO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}$	$0.029(0.7500)$
$\mathrm{HO} \cdots \mathrm{H}_{2} \mathrm{O}$	$0.010(0.7500)$	$\mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}$	$0.010(0.0000)$	$\mathrm{HO}_{3} \mathrm{H}$	$0.011(0.0000)$
IM 1	$0.028(0.0000)$	TS 1	$0.020(0.0000)$	IM 2	$0.018(0.0000)$
TS 2	$0.022(0.0000)$	TS 2 a	$0.022(0.0000)$	IM 3	$0.037(2.0000)$
TS 3	$0.035(2.0000)$	TS3a	$0.035(2.0000)$	IMW1	$0.020(0.0000)$
TSW1	$0.019(0.0000)$	IMW2	$0.020(0.0000)$	TSW2	$0.019(0.0000)$
IMW3	$0.015(0.0000)$	IMW3a	$0.015(0.0000)$	TSW3	$0.020(0.0000)$
TSW3a	$0.020(0.0000)$	TSW4	$0.019(0.0000)$	TSW4a	$0.019(0.0000)$
TSW5	$0.019(0.0000)$	IMW6	$0.024(2.0000)$	TSW6	$0.024(2.0000)$
IMW7	$0.026(2.0000)$	IMW7a	$0.026(2.0000)$	TSW7	$0.040(2.0000)$
TSW7a	$0.041(2.0000)$	IMW8	$0.027(2.0000)$	IMW8a	$0.027(2.0000)$
TSW8	$0.039(2.0000)$	TSW8a	$0.039(2.0000)$		

The values with and without parentheses were the T_{1} diagnostic values and spin contamination, respectively.

Table S2 The electronic energies (E) and relative energies (ΔE) (in kcal $\cdot \mathrm{mol}^{-1}$) for the $\mathrm{HO}_{2}+\mathrm{OH}$ reaction at the CASSCF/aug-cc-pV5Z//CCSD/6-311G(d,p) level

Species	$E($ a.u. $)$	$\Delta E($ a.u. $)$	$\Delta E\left(\mathrm{kcal} \cdot \mathrm{mol}^{-1}\right)$
$\mathrm{HO}_{2}+\mathrm{OH}$	-225.751411	0.00	0.00
IM 1	-225.734933	0.016478	10.34
TS 1	-225.714487	0.036924	23.17
${ }^{1} \mathrm{HO}_{3} \mathrm{H}$	-225.806119	-0.05471	-34.33
IM 2	-225.751204	0.000207	0.13
TS 2	-225.749307	0.002104	1.32
TS 2 a	-225.748574	0.002837	1.78
$\mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{O}_{2}$	-225.835378	-0.08397	-52.69
IM 3	-225.762216	-0.0108	-6.78
$\mathrm{TS3}$	-225.748447	0.002964	1.86
$\mathrm{TS3a}$	-225.748447	0.002964	1.86
$\mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{O}_{2}$	-225.869911	-0.118500	-74.36

Table S3 Rate constants $\left(\mathrm{cm}^{3} \cdot\right.$ molecule $\left.{ }^{-1} \cdot \mathrm{~s}^{-1}\right)$ for the process of $\mathrm{HO}_{3} \mathrm{H}$ formation without and with a water molecule

$\mathrm{T}(\mathrm{K})$	$k_{\mathrm{RW} 1}$	$k_{\mathrm{R} 1}$	$k_{\mathrm{RW} 1} / k_{\mathrm{R} 1}$
298.2	$1.324 \mathrm{E}-36$	$8.747 \mathrm{E}-33$	$1.51 \mathrm{E}-04$
288.2	$2.147 \mathrm{E}-36$	$1.221 \mathrm{E}-32$	$1.76 \mathrm{E}-04$
275.2	$5.745 \mathrm{E}-36$	$1.645 \mathrm{E}-31$	$3.49 \mathrm{E}-05$
262.2	$1.601 \mathrm{E}-35$	$1.606 \mathrm{E}-30$	$9.97 \mathrm{E}-06$
249.3	$4.618 \mathrm{E}-35$	$1.187 \mathrm{E}-29$	$3.89 \mathrm{E}-06$
236.3	$1.358 \mathrm{E}-35$	$6.816 \mathrm{E}-28$	$1.99 \mathrm{E}-08$
223.3	$4.009 \mathrm{E}-34$	$3.088 \mathrm{E}-27$	$1.30 \mathrm{E}-07$
216.7	$9.131 \mathrm{E}-34$	$4.932 \mathrm{E}-26$	$1.85 \mathrm{E}-08$

$k_{\mathrm{RW} 1}$ and $k_{\mathrm{R} 1}$ was the rate constants of Channel RW1 and Channel R1, respectively.

Table $\mathrm{S4}$ Kinetic results for water-catalyzed ${ }^{1} \mathrm{O}_{2}$ formation occurring through $\mathrm{HO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}+\mathrm{OH}$ and $\mathrm{HO}_{2}+\mathrm{HO} \cdots \mathrm{H}_{2} \mathrm{O}$ reactions

$\mathrm{T}(\mathrm{K})$	Keq(IMW2)	$k_{\text {IMW3 }}$	$k_{\text {IMW3a }}$	$k(\mathrm{TSW} 3)$	$k(\mathrm{TSW} 3 \mathrm{a})$	$k_{2}(\mathrm{RW} 2 \mathrm{a})$	$k_{\text {RW2a }}$
298.2	$4.06 \mathrm{E}-25$	$8.43 \mathrm{E}+11$	$1.24 \mathrm{E}+12$	$1.18 \mathrm{E}+11$	$1.13 \mathrm{E}+11$	$2.08 \mathrm{E}+11$	$8.46 \mathrm{E}-14$
288.2	$3.96 \mathrm{E}-25$	$8.18 \mathrm{E}+11$	$1.05 \mathrm{E}+12$	$7.26 \mathrm{E}+10$	$4.53 \mathrm{E}+10$	$1.11 \mathrm{E}+11$	$4.39 \mathrm{E}-14$
275.2	$3.90 \mathrm{E}-25$	$8.09 \mathrm{E}+11$	$8.82 \mathrm{E}+11$	$4.92 \mathrm{E}+10$	$3.99 \mathrm{E}+10$	$8.46 \mathrm{E}+10$	$3.30 \mathrm{E}-14$
262.2	$3.76 \mathrm{E}-25$	$7.88 \mathrm{E}+11$	$7.22 \mathrm{E}+11$	$3.80 \mathrm{E}+10$	$3.77 \mathrm{E}+10$	$7.21 \mathrm{E}+10$	$2.71 \mathrm{E}-14$
249.3	$3.66 \mathrm{E}-25$	$7.73 \mathrm{E}+11$	$5.61 \mathrm{E}+11$	$2.91 \mathrm{E}+10$	$1.76 \mathrm{E}+10$	$4.51 \mathrm{E}+10$	$1.65 \mathrm{E}-14$
236.3	$3.53 \mathrm{E}-25$	$7.36 \mathrm{E}+11$	$4.38 \mathrm{E}+11$	$2.09 \mathrm{E}+10$	$1.66 \mathrm{E}+10$	$3.63 \mathrm{E}+10$	$1.28 \mathrm{E}-14$
223.3	$3.39 \mathrm{E}-25$	$7.20 \mathrm{E}+11$	$3.91 \mathrm{E}+11$	$1.85 \mathrm{E}+10$	$1.53 \mathrm{E}+10$	$3.27 \mathrm{E}+10$	$1.11 \mathrm{E}-14$
$\mathrm{~T}(\mathrm{~K})$	$k_{\text {RW2b1 }}$	$k_{\text {RW2b2 }}$	$k_{\text {RW2b3 }}$	$k_{\mathrm{RW} 2 \mathrm{~b}}$			
298.2	$3.16 \mathrm{E}-19$	$2.11 \mathrm{E}-19$	$1.34 \mathrm{E}-19$	$6.61 \mathrm{E}-19$			
288.2	$2.15 \mathrm{E}-19$	$1.56 \mathrm{E}-19$	$9.77 \mathrm{E}-20$	$4.69 \mathrm{E}-19$			
275.2	$1.25 \mathrm{E}-19$	$1.03 \mathrm{E}-19$	$6.27 \mathrm{E}-20$	$2.91 \mathrm{E}-19$			
262.2	$6.98 \mathrm{E}-20$	$6.56 \mathrm{E}-20$	$3.89 \mathrm{E}-20$	$1.74 \mathrm{E}-19$			
249.3	$4.03 \mathrm{E}-20$	$3.70 \mathrm{E}-20$	$2.32 \mathrm{E}-20$	$1.00 \mathrm{E}-19$			
236.3	$2.38 \mathrm{E}-20$	$1.85 \mathrm{E}-20$	$1.32 \mathrm{E}-20$	$5.55 \mathrm{E}-20$			
223.3	$1.34 \mathrm{E}-20$	$8.74 \mathrm{E}-21$	$7.19 \mathrm{E}-21$	$2.93 \mathrm{E}-20$			

K_{eq} (IMW2) was the equilibrium constant for the process of $\mathrm{HO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}+\mathrm{OH} \rightarrow \mathrm{IMW} 2 ; k(\mathrm{IMW} 3)$ and k (IMW3a) was the rate constant for the process of IMW2 \rightarrow TSW $2 \rightarrow$ IMW3 and IMW2 \rightarrow TSW $2 \rightarrow$ IMW3a, respectively; k (TSW3) and k (TSW3a) was the rate constant for the process of IMW3 \rightarrow TSW3 $\rightarrow \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{O}_{2}$ and IMW3a \rightarrow TSW3a $\rightarrow \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{O}_{2}$, respectively; $k_{\mathrm{RW} 2 \mathrm{~b} 1,} k_{\mathrm{RW} 2 \mathrm{~b} 2}$ and $k_{\mathrm{RW} 2 \mathrm{~b} 3}$ was the rate constant for the process of $\mathrm{HO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}+\mathrm{OH} \rightarrow \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}+{ }^{1} \mathrm{O}_{2}$ via TSW4, TSW4a and TSW5, respectively.

Table $\mathrm{S5}$ Kinetic results for water-catalyzed ${ }^{3} \mathrm{O}_{2}$ formation occurring through $\mathrm{HO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}+\mathrm{OH}$ and $\mathrm{HO}_{2}+\mathrm{HO} \cdots \mathrm{H}_{2} \mathrm{O}$ reactions

$\mathrm{T}(\mathrm{K})$	Keq(IMW6	$k_{\text {IMW7 }}$	$k_{\text {IMW7a }}$	$k_{\text {TSW }}$	$k_{\text {TSW7a }}$	$k_{2}(\mathrm{RW} 3 \mathrm{a}$	$k_{\text {RW3a }}$
298.	$4.51 \mathrm{E}-25$	$9.92 \mathrm{E}+11$	$5.28 \mathrm{E}+11$	$8.44 \mathrm{E}+09$	$2.03 \mathrm{E}+10$	$2.82 \mathrm{E}+10$	$1.27 \mathrm{E}-1$
288.	$4.66 \mathrm{E}-25$	$1.01 \mathrm{E}+12$	$5.92 \mathrm{E}+11$	$8.26 \mathrm{E}+09$	$2.02 \mathrm{E}+10$	$2.80 \mathrm{E}+10$	$1.30 \mathrm{E}-1$
275.	$4.88 \mathrm{E}-25$	$1.05 \mathrm{E}+12$	$7.29 \mathrm{E}+11$	$8.03 \mathrm{E}+09$	$2.00 \mathrm{E}+10$	$2.76 \mathrm{E}+10$	$1.35 \mathrm{E}-1$
262.	$5.15 \mathrm{E}-25$	$1.08 \mathrm{E}+12$	$8.80 \mathrm{E}+11$	$7.79 \mathrm{E}+09$	$1.98 \mathrm{E}+10$	$2.72 \mathrm{E}+10$	$1.40 \mathrm{E}-1$
249.	$5.47 \mathrm{E}-25$	$1.12 \mathrm{E}+12$	$1.05 \mathrm{E}+1$	$7.55 \mathrm{E}+09$	$1.95 \mathrm{E}+10$	$2.67 \mathrm{E}+10$	$1.46 \mathrm{E}-1$
236.	$5.88 \mathrm{E}-25$	$1.15 \mathrm{E}+12$	$1.23 \mathrm{E}+1$	$7.31 \mathrm{E}+09$	$1.93 \mathrm{E}+10$	$2.63 \mathrm{E}+10$	$1.55 \mathrm{E}-1$
223.	$6.39 \mathrm{E}-25$	$1.18 \mathrm{E}+12$	$1.42 \mathrm{E}+1$	$7.07 \mathrm{E}+09$	$1.91 \mathrm{E}+10$	$2.59 \mathrm{E}+10$	$1.66 \mathrm{E}-1$
216.	$6.77 \mathrm{E}-25$	$1.21 \mathrm{E}+12$	$1.58 \mathrm{E}+1$	$6.96 \mathrm{E}+09$	$1.89 \mathrm{E}+10$	$2.56 \mathrm{E}+10$	$1.73 \mathrm{E}-1$
$\mathrm{~T}(\mathrm{~K})$	Keq(IMW8	$\mathrm{Keq}(\mathrm{IMW} 8 \mathrm{a}$	$k(\mathrm{TSW} 8)$	$k(\mathrm{TSW} 8 \mathrm{a}$	$k_{2}(\mathrm{RW} 3 \mathrm{~b}$	$k_{\mathrm{RW} 3 \mathrm{~b}}$	
298.	$2.84 \mathrm{E}-23$	$1.25 \mathrm{E}-23$	$3.02 \mathrm{E}+1$	$4.48 \mathrm{E}+12$	$7.50 \mathrm{E}+12$	$1.42 \mathrm{E}-10$	
288.	$4.02 \mathrm{E}-23$	$1.75 \mathrm{E}-23$	$2.98 \mathrm{E}+1$	$4.60 \mathrm{E}+12$	$7.58 \mathrm{E}+12$	$2.00 \mathrm{E}-10$	
275.	$6.53 \mathrm{E}-23$	$2.81 \mathrm{E}-23$	$2.92 \mathrm{E}+1$	$4.82 \mathrm{E}+12$	$7.74 \mathrm{E}+12$	$3.26 \mathrm{E}-10$	
262.	$1.11 \mathrm{E}-22$	$4.72 \mathrm{E}-23$	$2.85 \mathrm{E}+1$	$5.03 \mathrm{E}+12$	$7.88 \mathrm{E}+12$	$5.54 \mathrm{E}-10$	
249.	$2.01 \mathrm{E}-22$	$8.37 \mathrm{E}-23$	$2.79 \mathrm{E}+1$	$5.24 \mathrm{E}+12$	$8.03 \mathrm{E}+12$	$9.99 \mathrm{E}-10$	
236.	$3.88 \mathrm{E}-22$	$1.58 \mathrm{E}-22$	$2.71 \mathrm{E}+1$	$5.43 \mathrm{E}+12$	$8.14 \mathrm{E}+12$	$1.91 \mathrm{E}-09$	
223.	$8.06 \mathrm{E}-22$	$3.21 \mathrm{E}-22$	$2.64 \mathrm{E}+1$	$5.62 \mathrm{E}+12$	$8.26 \mathrm{E}+12$	$3.93 \mathrm{E}-09$	
216.	$1.28 \mathrm{E}-21$	$5.02 \mathrm{E}-22$	$2.60 \mathrm{E}+1$	$5.76 \mathrm{E}+12$	$8.36 \mathrm{E}+12$	$6.22 \mathrm{E}-09$	

K_{eq} (IMW6) was the equilibrium constant for the process of $\mathrm{HO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}+\mathrm{OH} \rightarrow$ IMW6; $k_{\text {IMW7 }}$ and $k_{\text {IMW7a }}$ was the rate constant for the process of IMW6 \rightarrow TSW6 \rightarrow IMW7 and IMW6 \rightarrow TSW7 \rightarrow IMW7a respectively; $k_{\text {TSW7 }}$ and $k_{\text {TSW7a }}$ was the rate constant for the process of IMW7 \rightarrow TSW7 $\rightarrow \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{O}_{2}$ and IMW7a \rightarrow TSW7a $\rightarrow \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{O}_{2}$ respectively; k_{2} (RW3a) was the rate constant for the process of IMW6 $\rightarrow \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{O}_{2}$; $K_{\text {eq }}$ (IMW8) and $\mathrm{K}_{\mathrm{eq}}{ }^{3} \mathrm{IMW8a}$) was the equilibrium constant for the process of $\mathrm{HO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}+\mathrm{HO} \rightarrow$ IMW8 and $\mathrm{HO}_{2} \cdots \mathrm{H}_{2} \mathrm{O}+\mathrm{HO} \rightarrow$ IMW8a, respectively;
k (TSW8) and k (TSW8a) was the rate constant for the process of IMW8 \rightarrow TSW8 $\rightarrow \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{O}_{2}$ and IMW8a \rightarrow TSW8a $\rightarrow \mathrm{H}_{2} \mathrm{O} \cdots \mathrm{H}_{2} \mathrm{O}+{ }^{3} \mathrm{O}_{2}$, respectively.

References
1 C. Gonzalez, J. Theisen, L. Zhu, H. B. Schlegel, W. L. Hase and E. W. Kaiser, J. Phys. Chem., 1991, 95, 6784-6792.
2 C. Gonzalez, J. Theisen, H. B. Schlegel, W. L. Hase and E. W. Kaiser, J Phys Chem, 1992, 96, 1767-1774.

[^0]: * Corresponding authors. Tel: +86-29-81530815, Fax: +86-29-81530727.
 e-mail: wlwang@snnu.edu.cn (W. L. Wang), lujian204@263.net (J. Lü).

