N-bromosuccinimide/carboxylic acid combination: mild and efficient

access to dibromination of unsaturated carbonyl compounds

Hongxun Xue, Hui Tan, Donglei Wei, Ying Wei, Shaoxia Lin, Fushun Liang,* and Baozhong Zhao*

Department of Chemistry, Northeast Normal University, Changchun 130024, China liangfs112@nenu.edu.cn

Table of contents

I. General.	S2
II. Synthesis and analytical data of 2a-p , 3a-c and 4a-c	S2
III. Copies of ¹ H and ¹³ C NMR spectra for compounds 2a-p , 3a-c and 4a-c	

I. General

All reagents were purchased from commercial sources and used without treatment, unless otherwise indicated. ¹H NMR and ¹³C NMR spectra were recorded at 25 °C on a Varian 500 MHz and 125 MHz, respectively, and TMS as internal standard. Elemental analyses were measured on an E-2400 analyzer (Perkin-Elmer). Mass spectra were recorded on Agilient 1100 LCMsD mass spectrometer. All the reactions were performed under normal conditions, without the necessity for inert gas protection.

II. Synthesis and analytical data of 2a-p, 3a-c and 4a-c.

General procedure for the Synthesis of **2** (**2a** as an example): 1.0 mmol chalcone **1a** was dispensed in 2 mL THF. 2.2 mmol NBS and 0.2 mmol benzoic acid was added and stirring for 6.0 h at ambient temperature. After the starting material **1a** was consumed as indicated by TLC, the reaction mixture was poured into water (10 mL) and extracted with CH_2Cl_2 (3 × 10 mL). The combined organic phase was washed with water (3 × 10 mL), and dried over anhydrous MgSO₄. The solvent was removed under reduced pressure, and the residue was purified by recrystalization in dichloromethane and petroleum ether to give compound **2a** (366 mg, 91%) as a white solid.

2,3-dibromo-3-(4-chlorophenyl)-1-phenylpropan-1-one (2a)

White solid. m.p. 184-186 °C. ¹H NMR (CDCl₃, 500 MHz) δ = 5.60-5.63 (d, *J* = 11.0 Hz, 1H), 5.76-5.78 (d, *J* = 11.5 Hz, 1H), 7.40-7.42 (m, 2H), 7.46-7.48 (m, 2H), 7.54-7.57 (t, *J* = 8.0 Hz, 2H), 7.66-7.68 (d, *J* = 8.0 Hz, 1H), 8.08-8.10 (t, *J* = 8.0 Hz, 2H). ¹³C NMR

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012 (DMSO- d_6 , 125 MHz) δ = 48.8, 73.3, 121.5, 129.3, 129.4, 130.7, 131.2, 134.5, 135.2, 141.5, 193.8. MS calcd *m/z* 399.8, Found 401.2 [(M + 1)]⁺. Anal. Calcd for C₁₅H₁₁Br₂ClO: C, 44.76; H, 2.75; Found: C, 44.88; H, 2.72.

2,3-dibromo-1,3-diphenylpropan-1-one (2b)

White solid. m.p. 166-168 °C. ¹H NMR (CDCl₃, 500 MHz) $\delta = 5.64-5.66$ (d, J = 11.5 Hz, 1H), 5.82-5.84 (d, J = 11.5Hz, 1H), 7.39-7.45 (m, 3H), 7.52-7.57 (m, 4H), 7.66-7.68 (t, 1H). 8.10-8.12(d, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 46.7$, 49.7, 128.3, 128.8, 128.8, 128.9, 129.2, 134.1, 134.3, 138.1, 191.1. MS calcd *m/z* 365.9, Found 3676.1 [(M + 1)]⁺. Anal. Calcd for C₁₅H₁₂Br₂O: C, 48.95; H, 3.29; Found: C, 49.16; H, 3.34.

2,3-dibromo-1-phenyl-3-p-tolylpropan-1-one (2c)

White solid. 187-189 °C. ¹H NMR (CDCl₃, 500 MHz) δ = 2.39 (s, 3H), 5.63-5.65 (d, *J* = 11.0Hz, 1H), 5.82-5.84 (d, *J* = 11.5Hz, 1H), 7.22-7.25 (t, *J* = 5.5Hz, 2H), 7.41-7.42 (d, *J* = 8.0 Hz, 2H), 7.53-7.56 (t, *J* = 7.5 Hz, 2H), 7.64-7.67 (t, *J* = 7.0 Hz, 1H), 8.09-8.11 (d, *J* = 7.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ = 46.8, 49.9, 128.1, 128.8, 128.9, 129.5, 134.1, 134.4, 135.2, 135, 139.3, 191.2. MS calcd *m/z* 379.9, Found 381.0 [(M + 1)]⁺. Anal. Calcd for C₁₆H₁₄Br₂O: C, 50.29; H, 3.69; Found: C, 50.52; H, 3.62.

2,3-dibromo-3-(4-methoxyphenyl)-1-phenylpropan-1-one (2d)

White solid. 149-151 °C. ¹H NMR (CDCl₃, 500 MHz) δ = 3.98 (s, 3H), 6.02-6.04 (d, *J* = 10.5Hz, 1H), 6.20-6.22 (d, *J* = 9.5Hz, 1H), 6.96-6.97 (d, *J* = 8.5Hz, 1H), 700-7.03 (t, *J* = 7.5 Hz, 1H), 7.35-7.39 (m, 1H), 7.45-7.46 (d, *J* = 7.5 Hz, 1H), 7.53-7.56 (m, 2H), 7.63-7.67 (m, 1H), 8.09-8.11 (t, *J* = 7.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ = 45.5, 55.9, 111.7, 120.9, 126.3, 128.9, 128.9, 134.0, 134.7, 191.5 (one carbon peak was missed due to overlap). MS calcd *m/z* 395.9, Found 397.2 [(M + 1)]⁺. Anal. Calcd for C₁₆H₁₄Br₂O₂: C, 48.27; H, 3.54; Found: C, 48.51; H, 3.59.

3-(benzo[d][1,3]dioxol-5-yl)-2,3-dibromo-1-phenylpropan-1-one (2e)

White solid. m.p. 194-196 °C. ¹H NMR (CDCl₃, 500 MHz) $\delta = 5.59-5.62$ (d, J = 11.0 Hz, 1H), 5.75-5.77 (d, J = 11.5 Hz, 1H), 6.03 (s, 2H), 6.81-6.83 (d, J = 7.0 Hz, 1H), 6.99-7.01 (t, J = 5.5 Hz, 2H), 7.54-7.57 (t, J = 8.0 Hz, 2H), 7.65-7.66 (d, J = 7.0 Hz, 1H), 8.08-8.10 (d, J = 7.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 47.0$, 50.3, 101.5, 108.0, 108.2, 122.6, 128.8, 128.9, 131.8, 134.1, 134.5, 148.1, 148.4, 191.2. MS calcd *m/z* 409.9, Found 411.1 [(M + 1)]⁺. Anal. Calcd for C₁₆H₁₂Br₂O₃: C, 46.64; H, 2.94; Found: C, 46.75; H, 2.90.

2,3-dibromo-3-(4-bromophenyl)-1-phenylpropan-1-one (2f)

White solid. m.p. 186-188 °C. ¹H NMR (CDCl₃, 500 MHz) $\delta = 5.59-5.61$ (d, J = 11.0 Hz, 1H), 5.75-5.77 (d, J = 11.5 Hz, 1H), 7.39-7.41 (d, J = 8.5 Hz, 2H), 7.54-7.58 (m, 4H), 7.61-7.68 (m, 1H), 8.08-8.09 (d, J = 7.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 46.5$, 48.6, 123.3, 128.8, 129.0, 129.9, 132.0, 134.2, 137.3, 190.8 (one carbon peak was missed due to overlap).. MS calcd m/z 443.8, Found 445.0 [(M + 1)]⁺. Anal. Calcd for C₁₅H₁₁Br₃O: C, 40.31; H, 2.48; Found: C, 40.59; H, 2.42.

2,3-dibromo-3-(4-fluorophenyl)-1-phenylpropan-1-one (2g)

White solid. m.p. 156-158 °C . ¹H NMR (CDCl₃, 500 MHz) $\delta = 5.63-5.65$ (d, J = 11.0 Hz, 1H), 5.76-5.78 (d, J = 11.5 Hz, 1H), 7.10-7.14 (t, J = 8.5 Hz, 2H), 7.50-7.52 (m, 2H) , 7.53- 7.57 (m, 2H), 7.66-7.67 (d, J = 7.5 Hz, 1H), 8.09-8.10 (d, J = 7.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 48.8$, 48.9, 115.8, 116.0, 128.9, 129.0, 130.2, 130.2, 134.2, 161.9, 163.9,191.0. MS calcd *m/z* 383.9, Found 385.0 (M + 1)]⁺. Anal. Calcd for C₁₅H₁₁Br₂FO: C, 46.67; H, 2.87; Found: C, 46.80; H, 2.90.

2,3-dibromo-3-(3-nitrophenyl)-1-phenylpropan-1-one (2h)

White solid. m.p. 188-190 °C . ¹H NMR (CDCl₃, 500 MHz) $\delta = 5.70-5.72$ (d, J = 11.0 Hz,

1H), 5.79-5.82 (d, J = 11.0 Hz, 1H), 7.57-7.65 (m, 3H), 7.68-7.71 (t, J = 7.5 Hz, 1H), 7.83-7.85 (d, J = 7.5Hz, 1H), 8.11-8.12 (m, 2H), 8.25-8.27 (m, 1H). 8.43 (t, J = 2.0 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 46.1$, 47.3, 123.3, 124.1, 128.9, 129.1, 129.9, 133.9, 134.5,134.5,140.4,148.4,190.4. MS calcd m/z 410.9, Found 412.2 [(M + 1)]⁺. Anal. Calcd for C₁₅H₁₁Br₂NO₃: C, 43.62; H, 2.68; Found: C, 43.85; H, 2.73.

2,3-dibromo-3-(naphthalen-2-yl)-1-phenylpropan-1-one (2i)

White solid. m.p. 216-218 °C . ¹H NMR (CDCl₃, 500 MHz) $\delta = 6.11-6.13$ (d, J = 11.0 Hz, 1H), 6.63-6.65 (d, J = 11.5 Hz, 1H), 6.74 (d, J = 9.0 Hz, 1H), 7.54-7.60 (m, 4H), 7.65-7.70 (m, 2H) ,7.90-7.93 (m, 3H), 8.16-8.18 (d, J = 7.5 Hz, 2H) , 8.26-8.28 (d, J = 8.5 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 44.1$, 45.9, 122.5, 125.3, 125.7, 126.2, 127.0, 128.9, 128.9, 129.0, 129.8, 130.9, 133.7, 133.7, 134.1, 134.4, 191.2. MS calcd m/z 415.9, Found 417.1 [(M + 1)]⁺. Anal. Calcd for C₁₉H₁₄Br₂O: C, 54.58; H, 3.37; Found: C, 54.73; H, 3.45.

3,4-dibromo-4-phenylbutan-2-one (2j)

White solid. m.p. 200-202 °C. ¹H NMR (CDCl₃, 500 MHz) $\delta = 2.49$ (s, 6H), 3.44 (s, 3H), 4.92-4.94 (d, J = 11.5 Hz, 1H), 5.30-5.33 (d, J = 11.5 Hz, 1H), 7.38-7.41 (m, 5H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 26.6$, 49.4, 52.7, 128.0, 128.8, 129.3, 137.7, 198.4. MS calcd m/z 303.9, Found 305.0 [(M + 1)]⁺. Anal. Calcd for C₁₀H₁₀B_{r2}O: C, 39.25; H, 3.29; Found: C, 39.46; H, 3.35.

2,3-dibromo-1-(4-chlorophenyl)-3-phenylpropan-1-one (2k)

White solid. m.p. 203-205 °C. ¹H NMR (CDCl₃, 500 MHz) $\delta = 5.61-5.63$ (d, J = 11.5 Hz, 1H), 5.75-5.77 (d, J = 11.5 Hz, 1H), 7.39-7.45 (m, 3H), 7.51-7.54 (m, 4H), 8.03-8.05 (t, J = 2.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 46.6$, 49.6, 128.3, 128.8, 129.3, 130.2,132.6, 137.9, 140.8, 190.0 (one carbon peak was missed due to overlap). MS calcd m/z 399.8, Found 401.1 [(M + 1)]⁺. Anal. Calcd for C₁₅H₁₁Br₂ClO: C, 44.76; H, 2.75; Found: C, 44.55; H, 2.70.

2,3-dibromo-1-(4-bromophenyl)-3-phenylpropan-1-one (2l)

White solid. m.p. 199-201 °C. ¹H NMR (CDCl₃, 500 MHz) $\delta = 5.61-5.63$ (d, J = 11.5 Hz, 1H), 5.74-5.76 (d, J = 11.5 Hz, 1H), 7.37-7.44 (m, 3H), 7.50-7.52 (d, J = 7.5 Hz, 2H), 7.68-7.01 (d, J = 8.5 Hz, 2H), 7.95-7.96 (d, J = 9.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 46.7$, 49.6, 128.3, 128.8, 129.3, 129.5, 130.3, 132.3, 133.1, 138.0, 190.2. MS calcd m/z 443.8, Found 445.1 [(M + 1)]⁺. Anal. Calcd for C₁₅H₁₁Br₃O: C, 40.31; H, 2.48; Found: C, 40.16; H, 2.42.

2,3-dibromo-3-phenyl-1-(p-tolyl)propan-1-one (2m)

White solid. m.p. 188-190 °C. ¹H NMR (CDCl₃, 500 MHz) $\delta = 3.46$ (s, 3H), 5.63-5.65 (d, J = 11.0 Hz, 1H), 5.80-5.83 (d, J = 11.0 Hz, 1H), 7.34-7.44 (m, 5H), 7.52-7.53 (d, J = 7.0 Hz, 2H), 8.00-8.01 (d, J = 8.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 21.8$, 46.7, 49.8, 128.3, 128.8, 129.0, 129.2, 129.7, 131.8, 138.3, 145.3, 190.7. MS calcd *m/z* 379.9, Found 381.0 [(M + 1)]⁺. Anal. Calcd for C₁₆H₁₄Br₂O: C, 50.29; H, 3.69; Found: C, 50.42; H, 3.75.

ethyl 2,3-dibromo-3-phenylpropanoate (2n)

White solid. m.p. 89-91 °C. ¹H NMR (CDCl₃, 500 MHz) $\delta = 1.36-1.39$ (t, J = 7.0 Hz, 3H), 4.34-4.38 (m, 2H) ,4.84-4.87 (d, J = 12.0 Hz, 1H), 5.36-5.38 (d, J = 12.0 Hz, 1H), 7.35-7.42 (m, 5H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 13.9$, 47.0, 50.7, 62.6, 128.0, 128.9, 129.3 ,137.6, 167.7. MS calcd *m/z* 333.9, Found 335.2 [(M + 1)]⁺. Anal. Calcd for C₁₁H₁₂Br₂O₂: C, 39.32; H, 3.60; Found: C, 39.54; H, 3.65.

(E)-4,5-dibromo-1,5-diphenylpent-1-en-3-one (20)

White solid. m.p. 150-152 °C. ¹H NMR (CDCl₃, 500 MHz) δ = 5.21-5.24 (d, *J* = 11.5 Hz, 1H), 5.48-5.50 (d, *J* = 11.5 Hz, 1H), 6.96-6.99 (d, *J* = 16 Hz, 1H), 7.38-7.49 (m, 8H), 7.64-7.66 (m, 2H), 7.86-7.89 (d, *J* = 16 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ = 49.4, 51.5, 122.1, 128.1, 128.1, 128.7, 128.8, 128.8, 129.0, 129.2, 131.2, 133.9, 138.1,

146.0, 189.8. MS calcd m/z 391.9, Found 393.0 $[(M + 1)]^+$. Anal. Calcd for C₁₇H₁₄Br₂O:

C, 51.81; H, 3.58; Found: C, 51.92; H, 3.66.

(E)-4,5-dibromo-1-phenyl-5-(p-tolyl)pent-1-en-3-one (2p)

White solid. m.p. 178-180 °C. ¹H NMR (CDCl₃, 500 MHz) δ = 2.38 (s, 3H), 5.21-5.23 (d, J = 11.5 Hz, 1H), 5.47-5.49 (d, J = 11.5 Hz, 1H), 6.90-6.99 (m, 1H), 7.22-7.26 (m, 2H), 7.36-7.38 (d, J = 8.0 Hz, 2H), 7.44-7.45 (m, 3H), 7.64-7.66 (m, 2H), 7.85-7.88 (d, J = 16 Hz, 1H). ¹³C NMR (CDCl₃, 125 MHz) δ = 21.3, 49.6, 51.6, 122.0, 128.0, 128.7, 129.0, 129.6, 131.2, 133.9, 135.1, 139.3, 146.0, 189.9. MS calcd *m/z* 405.9, Found 407.0 [(M + 1)]⁺. Anal. Calcd for C₁₈H₁₆Br₂O: C, 52.97; H, 3.95; Found: C, 52.72; H, 3.89.

2-bromo-3-(4-chlorophenyl)-3-hydroxy-1-phenylpropan-1-one (3a)

White solid. ¹H NMR (CDCl₃, 500 MHz) $\delta = 3.45-3.46$ (d, J = 5.0 Hz, 1H), 5.12-5.14 (d, J = 11.5 Hz, 1H), 5.29-5.32 (m, 1H), 7.36-7.38 (d, J = 8.5 Hz, 2H), 7.49-7.54 (m, 4H), 7.62-7.65 (t, J = 7.5 Hz, 1H), 8.00-8.02 (t, J = 7.0 Hz, 2H). MS calcd m/z 337.9, Found 339.2 [(M + 1)]⁺. Anal. Calcd for C₁₅H₁₂BrClO₂: C, 53.05; H, 3.56; Found: C, 53.30; H, 3.64.

3-bromo-2-hydroxy-1-phenyl-3-(thiophen-2-yl)propan-1-one (3b)

White solid. m.p. 101-103 °C. ¹H NMR (CDCl₃, 500 MHz) $\delta = 3.08-3.81$ (d, J = 5.5 Hz, 1H), 5.25-5.27 (d, J = 8.0 Hz, 1H), 5.25-5.61 (m, 1H), 6.98-7.00 (m, 1H), 7.14-715 (d, J = 3.0 Hz, 1H), 7.30-7.31 (m, 1H), 7.47-7.50 (t, J = 7.5 Hz, 2H), 7.59-7.62 (t, J = 7.5 Hz, 1H), 8.00-8.02 (t, J = 8.0 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 47.9$, 71.2, 125.6, 126.3, 126.6, 128.8, 128.9, 134.2, 134.3, 142.8, 194.4. MS calcd *m/z* 309.9, Found 311.4 [(M + 1)]⁺. Anal. Calcd for C₁₃H₁₁BrO₂S: C, 50.17; H, 3.56; Found: C, 50.30; H, 3.62.

2,3-dichloro-1,3-diphenylpropan-1-one (4a)

White solid. m.p. 117-119 °C. ¹H NMR (CDCl₃, 500 MHz) $\delta = 5.46-5.48$ (d, J = 10.5 Hz, 1H), 5.49-5.51 (d, J = 10.5 Hz, 1H), 7.41-7.46 (m, 3H), 7.45-7.47 (m, 2H), 7.52-7.57 (m, 4H), 7.65-7.68 (t, J = 7.5 Hz, 1H), 8.08-8.10 (t, J = 7.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) $\delta = 56.9$, 60.0, 60.6, 63.5, 127.8, 128.1, 128.3, 128.4, 128.6, 128.7, 128.8, 128.9, 129.1, 129.3, 129.9, 134.1, 134.2, 134.6, 137.0, 191.3. MS calcd *m/z* 278.0, Found 279.3 [(M + 1)]⁺. Anal. Calcd for C₁₅H₁₂Cl₂O: C, 64.54; H, 4.33; Found: C, 64.76; H, 4.41.

2,3-dichloro-3-(4-chlorophenyl)-1-phenylpropan-1-one (4b)

White solid. m.p. 180-183 °C. ¹H NMR (CDCl₃, 500 MHz) δ = 5.42-5.44 (d, *J* = 10.5 Hz, 1H), 5.45-5.47 (d, *J* = 10.5 Hz, 1H), 7.40-7.42 (m, 2H), 7.45-7.47 (m, 2H), 7.54-7.57 (m, 2H), 7.66-7.69 (m, 1H), 8.07-8.08 (t, *J* = 7.5 Hz, 2H). ¹³C NMR (CDCl₃, 125 MHz) δ = 56.7, 59.1, 128.9, 128.9, 129.0, 129.6, 134.3, 135.2, 135.5, 190.9 (one carbon peak

was missed due to overlap). MS calcd m/z 311.9, Found 313.2 [(M + 1)]⁺. Anal. Calcd

for $C_{15}H_{11}CI_3O$: C, 57.45; H, 3.54; Found: C, 57.65; H, 3.61.

2,3-dichloro-1-phenyl-3-(p-tolyl)propan-1-one (4c)

White solid. m.p. 172-174 °C. ¹H NMR (CDCl₃, 500 MHz) 2.39 (s, 3H), 5.44-5.46 (d, J = 10.5 Hz, 1H), 5.48-5.51 (d, J = 10.5 Hz, 1H), 7.24-7.25 (d, J = 9.5 Hz, 2H), 7.40-7.42 (d, J = 8.0 Hz, 2H), 7.53-7.56 (t, J = 8.0 Hz, 2H), 7.64-7.67 (m, 1H), 8.07-8.09 (m, 2H). MS calcd m/z 292.0, Found 293.3 [(M + 1)]⁺. Anal. Calcd for C₁₆H₁₄Cl₂O; C, 65.55; H, 4.81; Found: C, 65.32; H, 4.73.

III. Copies of ¹H and ¹³C NMR spectra for compounds 2a-p, 3a-c and 4a-c.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2012

