Organocatalyzed straightforward synthesis of highly fluorescent 3,5disubstituted 2,6-dicyanoanilines via domino annulation of α enolicdithioesters with malononitrile

B. Janaki Ramulu^a, Tanmoy Chanda^a, Sushobhan Chowdhury^a, Ganesh C. Nandi^b and Maya Shankar Singh^a*

^aDepartment of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005, India. E-mail: <u>mssinghbhu@yahoo.co.in</u>

^bDepartment of Chemistry, University of North Florida, 1, UNF Drive, Jacksonville, FL 32224, USA

Table of Content

1.	Experimental section	2
2.	Characterisation data of the isolated compounds	.3-7
3.	¹ H, ¹³ C NMR and HRMS spectra	8-53
4.	Optical spectra	.54-60

1. Experimental Section

General. Malononitrile purchased from Sigma-Aldrich was used as such without any further purification. α -Enolicdithioesters (Table 2, entries 1-18) were prepared following the known procedure. Thin-layer chromatography (TLC) was performed using silica gel 60 F₂₅₄ precoated plates. Infrared (IR) spectra are measured using KBr, and wavelengths (ν) are reported in cm⁻¹. ¹H and ¹³C NMR spectra were recorded on NMR spectrometer operating at 400, 300, 125, 100, and 75.5 MHz. Chemical shifts (δ) are given in parts per million (ppm) using the residue solvent peaks as reference relative to TMS. '*J*' values are given in Hertz (Hz). High resolution mass spectra (HRMS) were recorded using electrospray ionization (ESI) mass spectrometry. The melting points are uncorrected.

General procedure for the synthesis of the 2,6-dicyanoanilines (3a-r). To a mixture of α enolic dithioesters (1.0 equiv.) and malononitrile (2.0 equiv.) in ethanol (3 mL), piperidine (0.2
equiv.) was added and the reaction mixture was refluxed for the stipulated period of time (Table
2). After completion of the reaction (monitored by TLC), the ethanol was evaporated and the
water (20 mL) was added to the reaction mixture followed by extraction with dichloromethane (2
× 10 mL). The combined organic layer was dried over anhyd. Na₂SO₄ and then evaporated under
vacuo. The crude residue was purified by column chromatography over silica gel using ethyl
acetate/hexane (1:10) as eluent to afford pure dicyanoaniline derivatives.

2. Characterisation data of the isolated compounds

2,6-dicyano-3-phenyl-5-thiomethylaniline (3a). White solid (96% yield), mp 242-243 °C. IR

(KBr, cm⁻¹): $v_{max} = 3394$, 3343, 3247, 2921, 2852, 2216, 1655, 1544, 1430, 1284, 699. ¹H NMR (300 MHz, CDCl₃): δ 7.50 (m, 5H), 6.56 (s, 1H), 5.24 (br, 2H), 2.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 152.5, 151.0, 149.8, 137.4, 129.7, 128.9, 128.2, 116.1, 115.9, 114.2, 93.1, 92.5, 15.0.

2,6-dicyano-3-(4'-methylphenyl)-5-thiomethylaniline (3b). White solide (89% yield), mp 210

°C. IR (KBr, cm⁻¹): v_{max} = 3463, 3371, 3227, 2927, 2212, 1635, 1563, 802. ¹H NMR (400 MHz, CDCl₃): δ 7.46 (d, *J* = 8 HZ, 2H), 7.33 (d, *J* = 8 Hz, 2H), 6.56 (s, 1H), 5.25 (br, 2H), 2.58(s, 3H), 2.44(s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 152.6, 150.8, 149.9, 140.0, 134.6, 129.5,

128.1, 116.1, 114.3, 114.1, 92.8, 92.4, 21.3, 14.9.

2,6-dicyano-3-(4'-methoxyphenyl)-5-thiomethylaniline (3c). White solid (90% yield), mp 209-

210 °C. IR (KBr, cm⁻¹): v_{max} = 3455, 3335, 3235, 2223, 1644, 1567, 1515, 1281, 1255, 1179, 1028, 826. ¹H NMR (300 MHz, CDCl3): δ 7.50 (d, J = 9 Hz, 2H), 7.02 (d, J = 9 Hz, 2H), 6.53 (s, 1H), 5.21 (br, 2H), 3.87 (s, 3H), 2.56 (s, 3H). ¹³C NMR (75 MHz, CDCl3): δ 160.6,

152.8, 150.4, 149.4, 129.6, 129.5, 116.0, 114.2, 114.1, 113.7, 92.5, 92.1, 55.2, 14.8. HRMS (ESI): calcd for $C_{16}H_{13}N_3OS [M+Na]^+$ 318.0671, found 318.0670.

2,6-dicyano-3-(4'-chlorophenyl)-5-thiomethylaniline (3d). White solid (85% yield), mp 245-

246 °C. IR (KBr, cm⁻¹): $v_{max} = 3432$, 3352, 3259, 2925, 2222, 1647, 1543, 1015, 814. ¹H NMR (300 MHz, CDCl₃): δ 7.54-7.43 (m, 4H), 6.51 (s, 1H), 5.25 (br, 2H), 2.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 152.5, 151.3, 148.5, 142.5, 136.1, 129.6, 129.2, 117.0, 115.7, 113.9,

93.4, 92.3, 15.0. HRMS (ESI): calcd for C₁₅H₁₀ClN₃S [M+H]⁺ 300.0356, found 300.0373.

2,6-dicyano-3-(4'-trifluoromethylphenyl)-5-thiomethylaniline(3e). White solid (84% yield),

mp 215-216 °C. IR (KBr, cm⁻¹): $v_{max} = 3479$, 3348, 3244, 2926, 2223, 1643, 1562, 1545, 1328, 1164. ¹H NMR (300 MHz, CDCl₃): δ 7.78 (d, J = 8.1 Hz, 2H), 7.65 (d, J = 8.1 Hz, 2H), 6.53 (s, 1H), 5.28 (br, 2H), 2.57 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 152.7, 151.1, 147.7, 140.7, 131.0 (q, J = 32.5 Hz, ArC-CF₃), 128.4, 125.2, 121.5 (q, J = 32.5 Hz, ArC-CF₃), 128.4, 125.2, 128.4, 125.2, 128.4, 125.2, 128.4, 125.2, 128.4, 125.2, 128.4, 125.4, 128.4, 125.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4, 128.4

269.5Hz, CF₃) 115.3, 113.8, 112.8, 92.9, 91.5, 14.4. HRMS (ESI): calcd for $C_{16}H_{10}F_3N_3S$ [M+NH₄]⁺ 351.0885, found 351.0899.

2,6-dicyano-3-(3'-methoxyphenyl)-5-thiomethylaniline (3f). White solid (90% yield), mp

200-201 °C. IR (KBr, cm⁻¹): $v_{max} = 3462, 3359, 3239, 3084, 2938, 2214, 1636, 1562, 1455, 1292, 1238, 1057, 885, 791. ¹H NMR (300 MHz, CDCl₃): <math>\delta$ 7.43-7.38 (m, 1H), 7.10-7.01 (m, 3H), 6.56 (s, 1H), 5.23 (br, 2H), 3.86 (s, 3H), 2.56 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 159.7, 152.5, 151.0, 149.6, 138.7, 130.0, 120.5, 115.9, 115.2, 114.2 114.1, 114.0, 93.1, 92.5, 55.4, 15.0. HRMS (ESI): calcd for C₁₆H₁₃N₃OS

 $[M+NH_4]^+$ 313.1117, found 313.1126.

2,6-dicyano-3-(2'-chlorophenyl)-5-thiomethylaniline (3g). White solid (90% yield), mp 179- **SMe SMe CN NH**₂ **CN CN NH**₂ **CN CN CD C1**₃): δ **CN CD C1**₃): δ **CD CD C1**

2,6-dicyano-3-(2'-bromophenyl)-5-thiomethylaniline(3h). White solid (88% yield), mp 173

°C. IR (KBr, cm⁻¹): $v_{max} = 3466$, 3357, 3239, 2922, 2212, 1632, 1545, 1287, 766. ¹H NMR (300 MHz, CDCl₃): δ 7.72 (d, J = 7.8 Hz, 1H), 7.45-7.29 (m, 3H), 6.48 (s, 1H), 5.29 (br, 2H), 2.53 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 152.0, 150.9 148.8, 138.2, 133.3, 130.8, 130.2, 127.6,

121.9, 115.0, 114.7, 114.0, 93.9, 93.5, 14.9.

3-Biphenyl-2,6-dicyano-5-thiomethylaniline (3i). White solid (92% yield), mp 179-180 °C. IR

(KBr, cm⁻¹): $v_{max} = 3467$, 3358, 3239, 3058, 2922, 2212, 1631, 1287, 766. ¹H NMR (300 MHz, CDCl₃): δ 7.72-7.70 (m, 2H), 7.64-7.60 (m, 1H), 7.49 – 7.40 (m, 2H), 7.35-7.29 (m, 4H), 6.49 (s, 1H), 5.24 (br, 2H), 2.54 (s, 3H). ¹³C NMR (75 MHz,

CDCl₃): δ 151.9, 151.0, 148.8, 138.2, 133.3, 130.8, 130.2, 128.9, 127.6, 127.1, 121.9, 115.0, 114.8, 114.0, 94.0, 93.5, 14.9.

2,6-dicyano-3-(1'-naphthyl)-5-thiomethylaniline (3j). White solid (93% yield), mp 156-157

°C. IR (KBr, cm⁻¹): $v_{max} = 3452$, 3334, 3236, 2224, 2210, 1645, 1564, 1548, 1289, 815, 743. ¹H NMR (300 MHz, CDCl₃): δ 7.97-7.92 (m, 2H), 7.57-7.45 (m, 5H), 6.61 (s, 1H), 5.25 (br, 2H), 2.49 (s, 3H), ¹³C NMR (100 MHz, DMSO): δ 153.5, 151.6, 149.4, 136.0, 133.5, 130.7, 129.7, 128.8, 127.4, 127.2, 126.8, 125.8, 125.3, 116.0, 114.9, 114.3,

94.1, 92.2 14.5. HRMS (ESI): calcd for C₁₉H₁₃N₃S [M+Na]⁺ 338.0722, found 338.0731.

2,6-dicyano-3-(2'-naphthyl)-5-thiomethylaniline(3k). White solid (92% yield), mp 240-241 $\stackrel{\mathsf{SMe}}{\longleftarrow} \stackrel{\mathsf{CN}}{\longleftarrow} \stackrel{\mathsf{CN}}{\longleftarrow} \stackrel{\mathsf{CN}}{\longleftarrow} \stackrel{\mathsf{C}}{\longleftarrow} \stackrel{\mathsf{C}}{\longleftarrow} \stackrel{\mathsf{IR}}{\longleftarrow} \stackrel{\mathsf{(KBr, cm^{-1}): }}{\longleftarrow} v_{max} = 3453, 3335, 2225, 2205, 1643, 1562, 1126. {}^{1}\text{H}}{\phantom{\mathsf{NMR}}}$ $\stackrel{\mathsf{NMR}}{\longleftarrow} (300 \text{ MHz, CDCl}_3): \delta 7.99-7.89 \text{ (m, } J = 7.42 \text{ Hz, 4H}), 7.60-7.53 \text{ (m, 3H), 6.65 (s, 1H), 5.25 (br, 2H), 2.57 (s, 3H). {}^{13}\text{C}} \text{ NMR (75 MHz, CDCl}_3): \delta 152.6, 151.0, 149.8, 134.7, 133.5, 132.9, 128.7, 128.4, 128.0, 128.7, 128.4, 128.7, 128.4, 128.7, 128.4, 128.7, 128.4, 128.7, 128.4, 128.7, 128.4, 128.7, 128.4, 128.7, 128.4, 128.7, 128.4, 128.7, 128.4, 128.7, 128.4, 128.7, 128.4, 128.7, 128.7, 128.4, 128.7, 128.7, 128.4, 128.7$

127.7, 127.3, 126.9, 125.4, 116.0, 114.4, 112.4, 92.9, 92.6, 15.0. HRMS (ESI): calcd for $C_{19}H_{13}N_3S [M+Na]^+$ 338.0722, found 338.0726.

2,6-dicyano-3-(2'-thienyl)-5-thiomethylaniline(3l). White solid (80% yield), mp 225-226 °C.

IR (KBr, cm⁻¹): $v_{max} = 3461$, 3370, 3101, 2930, 2211, 1420, 1624, 1556, 1290, 817, 725. ¹H NMR (300 MHz, CDCl₃): δ 7.69 (d, J = 3.3 Hz, 1H), 7.51 (d, J = 5.1 Hz, 1H), 7.19 (dd, J = 4.8, 3.75 Hz, 1H), 6.67 (s, 1H), 5.24 (br, 2H), 2.59 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 152.8, 151.1,

141.5, 138.5, 128.8, 128.6, 128.5, 116.2, 114.2, 113.5, 92.8, 90.8, 14.9. HRMS (ESI): calcd for $C_{13}H_9N_3S_2 [M+H]^+$ 272.0311, found 272.0312.

2,6-dicyano-3-(2'-furyl)-5-thiomethylaniline(3m). White solid (86% yield), mp 250-252 °C. IR (KBr, cm⁻¹): $v_{max} = 3411$, 3345, 3248, 2924, 2853, 2212, 1651, 1578, 1551, 1485, 1462, 1296, 1029, 965, 885, 748. ¹H NMR (300 MHz, CDCl₃): δ 7.60 (d, J = 1.2 Hz, 1H), 7.45 (dd, J = 3.6, 3.3 Hz, 1H), 7.02 (d, J = 2.7 Hz, 1H), 6.60 (s, 1H), 5.21 (br, 2H), 2.62 (s, 3H). ¹³C NMR (100 MHz, DMSO): δ 154.3, 151.7, 149.0, 146.0, 136.6, 116.8, 113.6, 114.9, 113.6, 113.3,

(100 MHz, DMSO): *a* 154.3, 151.7, 149.0, 146.0, 136.6, 116.8, 113.6, 114.9, 113.6, 113.3 108.8, 94.8, 91.3, 14.4.

2,6-dicyano-3-(3'-pyridyl)-5-thiomethylaniline(3n). White solid (90% yield), mp 262-263 °C.

IR (KBr, cm⁻¹): $v_{max} = 3386$, 3257, 3138, 2924, 2854, 2215, 1668, 1591, 1551, 1412, 1102, 1028, 806, 711. ¹H NMR (300 MHz, DMSO): δ 8.77 (s, 1H), 8.69 (d, J = 4.8 Hz, 1H), 8.04 (d, J = 7.8 Hz, 1H)), 7.57-7.53 (m, 1H), 6.83 (br, NH₂, 2H), 6.64 (s, 1H), 2.61 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 152.8, 151.2, 150.0, 148.2, 145.7, 135.3, 133.1, 122.9, 115.3,

113.7, 112.7, 93.4, 91.6, 14.4. HRMS (ESI): calcd for $C_{14}H_{10}N_4S$ [M+H]⁺ 267.0699, found 267.0700.

2,6-dicyano-3-(3'-N-methylpyrrolo)-5-thiomethylaniline (30). White solid (70% yield), mp

231-232 °C. IR (KBr, cm⁻¹): v_{max} = 3450, 3352, 3245, 2928, 2199, 1645, 1568, 1539. ^IH NMR (300 MHz, DMSO): δ 7.47 (s, 1H), 6.85 (s, 1H), 6.61 (br, NH₂, 1H), 6.47 (s, 2H), 3.62 (s, 3H), 2.59 (s, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 149.9, 144.9, 143.7, 123.8, 123.2, 122.6, 120.5, 117.4, 112.2, 108.4, 95.3, 94.4, 36.6, 15.0.

2,6-dicyano-3-(3',4'-methylenedioxyphenyl)-5-thiomethylaniline(3p). White solid (83%

yield), mp 238-239 °C. IR (KBr, cm⁻¹): v_{max} = 3449, 3358, 3254, 2929, 2222, 2209, 1655, 1503, 1564, 1459, 1291, 1247, 1037, 823. ¹H NMR

(300 MHz, CDCl3): δ 7.01-6.90 (m, 3H), 6.51 (s, 1H), 6.05 (s, 2H), 5.21 (br, 2H), 2.56 (s, 3H). 13C NMR (75 MHz, CDCl3): δ 153.2, 150.6, 149.0, 148.1, 147.3, 131.1, 122.7, 122.6, 122.4, 115.9, 114.2, 101.3, 94.5, 93.9, 91.3, 13.8.

2,6-dicyano-3-phenyl-5-thioallylaniline (3q). White solid (85% yield), mp 238-239 °C. IR

(KBr, cm⁻¹): $v_{max} = 3477$, 3362, 3232, 2952, 2212, 1639, 1560, 692. ¹H NMR (300 MHz, CDCl₃): δ 7.48 (m, 5H), 6.65 (s, 1H), 5.91-5.82 (m, 1H), 5.33-5.21 (m, NH₂, =CH₂, 4H), 3.70 (d, *J* = 6.6, 2H), ¹³C NMR (75 MHz, CDCl₃): δ 152.7, 149.5, 148.7, 137.3, 131.4, 129.7, 128.9, 128.2, 119.6, 116.4, 115.9, 114.3, 94.3, 92.9, 35.3. . HRMS (ESI): calcd for

 $C_{17}H_{13}N_3S$ [M+H]⁺ 292.0903, found 292.0903.

2,6-dicyano-3-(2'-naphthyl)-5-thioallylaniline (3r). White solid (87% yield), mp 187-189 °C.

IR (KBr, cm⁻¹): $v_{max} = 3458$, 3424, 3354, 3249, 3056, 2210, 1650, 1563, 1542, 813. ¹H NMR (300 MHz, CDCl₃): δ 7.98 – 7.90 (m, 4H), 7.58 (d, J = 6.3, 3H), 6.75 (s, 1H), 5.96 – 5.84 (m, 1H), 5.35 – 5.23 (m, NH₂, =CH₂, 4H), 3.73 (d, J = 6.6, 2H). ¹³C NMR (75 MHz, CDCl₃): δ 152.8, 149.5, 148.6, 134.7, 133.6, 133.0, 131.6, 128.7,

128.5, 128.1, 127.7, 127.3, 126.9, 125.3, 119.5, 117.0, 115.8, 114.3, 94.7, 93.3, 35.5.

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

¹H NMR SPECTRUM OF 3a

$D_2O\ EXACHANGE\ NMR\ SPECTRUM\ OF\ 3a$

¹³C NMR SPECTRUM OF 3a

¹H NMR SPECTRUM OF 3b

¹³C NMR SPECTRUM OF 3b

¹H NMR SPECTRUM OF 3c

¹³C NMR SPECTRUM OF 3c

¹H NMR SPECTRUM OF 3d

¹³C NMR SPECTRUM OF 3d

¹H NMR SPECTRUM OF 3e

¹³C NMR SPECTRUM OF 3e

¹H NMR SPECTRUM OF 3f

¹³C NMR SPECTRUM OF 3f

¹H NMR SPECTRUM OF 3g

¹³C NMR SPECTRUM OF 3g

1021124-04282

¹H NMR SPECTRUM OF 3h

¹³C NMR SPECTRUM OF 3h

¹H NMR SPECTRUM OF 3i

¹³C NMR SPECTRUM OF 3i

¹H NMR SPECTRUM OF 3j

¹³C NMR SPECTRUM OF 3j

¹H NMR SPECTRUM OF 3k

¹³C NMR SPECTRUM OF 3k

¹H NMR SPECTRUM OF 31

¹³C NMR SPECTRUM OF 31

¹HNMRSPECTRUM OF 3m

¹³C NMR SPECTRUM OF 3m

¹H NMR SPECTRUM OF 3n

¹³C NMR SPECTRUM OF 3n

¹H NMR SPECTRUM OF 30

¹³C NMR SPECTRUM OF 30

¹H NMR SPECTRUM OF 3p

¹³C NMR SPECTRUM OF 3p

¹H NMR SPECTRUM OF 3q

¹³C NMR SPECTRUM OF 3q

¹H NMR SPECTRUM OF 3r

¹³C NMR SPECTRUM OF 3r

HRMS OF 3c

HRMS OF 3d

HRMS OF 3e

HRMS OF 3f

HRMS OF 3k

HRMS OF 31

HRMS OF 3n

HRMS OF 3q

Optical Spectra: UV-absorption spectra were recorded in UV–visible spectrophotometer. Fluorescence spectra were recorded in spectrofluorophotometer. The concentration of compounds for UV-visible and fluorescence were 5×10^{-4} mol/L. All spectra were recorded at room temperature. For the determination of fluorescence quantum yields following equation was used

$$\Phi_{\rm s} = [(A_r I_s n_s^2) / (A_s I_r n_r^2)] \Phi_{\rm s}$$

where the subscript *s* refers to the sample and the subscript *r* refers to the reference standard; Φ is quantum yield, *A* is the absorbance at the excitation wavelength, *I* is the emission intensity height, and *n* is the index of refraction (at the sodium D line) of the solvent containing the sample and the reference standard. The reference standard chosen was anthracene ($\Phi_{ref} = 0.27 \pm 0.03$ in ethanol) because its fluorescence emission is in the same range as our samples. The indices of refraction for the solvents used were taken from the commercial source and distilled by reported method.

Compound 3a: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3b: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3c: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3d: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3e: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3f: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3g: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3h: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3i: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3j: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3k: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 31: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3m: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3n: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 30: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3p: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3q: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

Compound 3r: UV-Vis spectrum (Left) & Fluorescence spectrum (Right)

