Supporting information

Single-phased White-light-emitting KCaGd(PO₄)₂:Eu²⁺,Tb³⁺,Mn²⁺ Phosphors for LED Applications

Wei-Ren Liu,^{*,†} Chien-Hao Huang,[‡] Chiao-Wen Yeh,[§] Yi-Chen Chiu,[‡] Yao-Tsung Yeh[‡] and Ru-Shi Liu [§]

[†] Department of Chemical Engineering, R&D Center for Membrane Center,

Chung Yuan Christian University, Chung Li, Taiwan

 ‡ Material and Chemical Research Laboratories, ITRI

Hsichu, Taiwan 300, R.O.C.

[§] Department of Chemistry, National Taiwan University, Taipei 106, Taiwan, R.O.C. (E-mail: WRLiu1203@gmail.com)

Materials and Methods

Characterization

Scanning Electron Microscope (SEM)

Surface morphology of as-synthesized $KCaGd(PO_4)_2$ host (Fig. S1) were performed on a JEOL-7000F field emission scanning electron microscope. Accelerating voltage of 5 kV and 50-s accumulation time were applied in data acquisition.

Laser Light Scattering

The particle distribution of CGP:Eu,Mn phosphor (Fig. S2) was measured by FRITSCH analysette 22.

Variable Temperature Photoluminescence

Variable Temperature PL spectra (Fig. S4) were carried out with a spectrophotometer (Jobin-Yvon Spex, Model FluoroMax-3).

The Commission International de l'Eclairage (CIE) chromaticity

CIE coordinates (Fig. S5) were measured by a Laiko DT-101 color analyzer equipped with a CCD detector (Laiko Co., Tokyo, Japan).

Fig. S1 SEM image of KCaGd(PO₄)₂.

Fig. S2 Particle size distribution of KCaGd(PO₄)₂.

Fig. S3 Temperature dependence emission spectrum as $\lambda_{ex} = 380$ nm. The maximum intensity of Eu²⁺, Tb³⁺ and Mn²⁺ dependence of temperature are shown in the inset (Jobin-Yvon Spex, Model FluoroMax-3).

Table S1. Decay life time of $KCaGd(PO_4)_2$:x%Eu (x = 1, 3, 5, 7, 10) phosphors.

Sample	Ex. (nm)	Em. (nm)	Lifetime
KCaGd(PO ₄) ₂ :1%Eu	365	462	817 ns
KCaGd(PO ₄) ₂ :3%Eu	365	462	758 ns
KCaGd(PO ₄) ₂ :5%Eu	365	462	678 ns
KCaGd(PO ₄) ₂ :7%Eu	365	462	631 ns
KCaGd(PO ₄) ₂ :10%Eu	365	462	571 ns

Fig. S4 Decay life time of KCaGd(PO4)2:1%Eu,10%Tb,10%Mn phosphor monitored at 462 nm.

Fig. S5 Decay life time of KCaGd(PO4)₂:1%Eu,10%Tb,10%Mn phosphor monitored at 542 nm and 650 nm.

Ex. (nm)	Em. (nm)	Lifetime
365	462	810 ns
	542	836 ns
	650	1542 ns
	Ex. (nm) 365	Ex. (nm) Em. (nm) 462 365 542 650

Table S2. Decay life time of KCaGd(PO₄)₂:1%Eu, 10%Tb and 10%Mn phosphor.