Effects of titanium foil thickness on TiO_2 nanostructures synthesized by anodization

Rajeshkumar S. Hyam^a and Dukhyun Choi^{a,*}

ESI1 Growth and movement of barrier layer w.r.t time. The arrows in the schematic depicts, Ti^{4+} , H^+ , H^+ , TiF_6^{2-} , O^{2-} , F^- , Applied force due to applied electric field

ESI2 FE-TEM Diffraction line images of TiO₂ nanostructures synthesized on varied thickness of Ti foil (t_{Ti} = 0.5 mm, t_{Ti} = 0.25 mm and t_{Ti} = 0.125 mm)

ESI3 Nanoindentation data to study barrier layer properties on different Ti foils thickness ($t_{Ti} = 0.5$ mm, $t_{Ti} = 0.25$ mm and $t_{Ti} = 0.125$ mm) at (a) 300nm and (b) 500nm indentation depth (DI)

ESI4 Nanoindentation (indentation modulus data) to study barrier layer properties on different Ti foils thickness ($t_{Ti} = 0.5$ mm, $t_{Ti} = 0.25$ mm and $t_{Ti} = 0.125$ mm) at nanoindentation depth (D₁) of 300nm and 500nm.

