Synthesis of ketoximes via a solvent-assisted and robust mechanochemical pathway

Christer B. Aakeröy,^a Abhijeet S. Sinha

Department of Chemistry, Kansas State University, Manhattan, KS 66506

aakeroy@ksu.edu

Supporting Information

Table of contents

General experimental details	S3
General synthesis of the ketoximes	S4-S6
Characterization of the ketoximes	S7

General experimental details

¹H NMR spectra were recorded on a Varian Unity plus 400 MHz spectrometer in CDCl₃ or d₆-DMSO. Data is expressed in parts per million (ppm) downfield shift from tetramethylsilane or residual protiosolvent as internal reference and are reported as position (in ppm), multiplicity (s = singlet, d = doublet, t = triplet, m= multiplet), coupling constant (J in Hz) and integration (number of protons). Melting points were recorded on a Fisher-Johns melting point apparatus and are uncorrected. All the chemicals were purchased from Aldrich and used without further purification, unless otherwise noted.

#	Physical state of reactant	Reactant	Physical state of ground mixture	Product
1	Liquid	/=\ /º	White solid	/— N-OH
				CI-CH3
2	Solid		Yellow solid	 /=́N-ОН
<i>–</i>	SOIIU	Br	i chow solid	Br—
3	Liquid	СН3	Yellow solid	Сн ₃
3	ыции	<>><	i chów solid	$\langle \rangle \rightarrow \langle \rangle$
		Br CH3		Br CH3
4	Solid		Brown solid	N-OH
		СН3		СН3
5	Solid		White solid	N-ОН
		NEC CH3		NEC-CH3
6	Liquid	H ₃ C-	White solid	/— N-OH
		H ₃ C CH ₃		H ₃ C-CH ₃
7	Liquid		White solid	/=N-OH
		СН3		СН3
	a ** 1	H ₃ C	xy, ,, ,, ,, ,	H ₃ C
8	Solid	$\langle \rangle \rightarrow \langle \rangle$	Viscous yellow solid	N−OH
		но СН3		но СН3
9	Liquid		White solid	N_OH
		СН3		CH3
		ЮН		ОН
10	Solid	H ₂ N-	Yellow solid	H ₂ N-OH
	a ** 1	СН3	X7 11	CH3
11	Solid	$\langle \rangle \rightarrow \langle \rangle$	Yellow solid	N-OH
		H ₂ N CH ₃		CH ₃
12	Liquid	/=_/0	White solid	N-OH
	ŕ	N CH3		NCH3
13	Liquid		White solid	/— М-ОН
	-			N_CH3
14	Liquid		White solid	/М_ОН
		N CH3		K CH3
15	Solid		White solid	/— N-ОН
				N CH3
		н ₃ с—		H ₃ C-
		0		N Но́
16	Solid	H ₃ CO	White solid	H ₃ C N-OH
		о Снз		HO-N CH3
17	Solid		White solid	/
		СН3		CH ₃
		н₃с−		H ₃ C
		0		но́
18	Liquid	CH ₃	Viscous white solid	CH3
	•••	H ₃ C		H ₃ C/N ^{OH}
19	Liquid	С Дон	Viscous white solid	HO_N II
		H3C, \sim \sim		н _з с ОН
20	Liquid	CH3 CH3	White solid	
		0~~0		HONNOH

General synthetic method for 2, 4-6, 8, 11, 13-14, 17

In a mortar, 1.0 mmole of the ketone and 1.2 mmoles (per ketone present) of hydroxylamine hydrochloride is ground together with a pestle. Then, 1.2 mmoles (per ketone present) of crushed sodium hydroxide is added and the mixture is ground further with the addition of 0.1-0.2 mL methanol, for 2 minutes at room temperature. The reaction mixture is left for 5 minutes, after which it is ground for another 2 minutes with 0.1-0.2 mL methanol. At this stage the reaction is monitored by TLC. Upon completion of the reaction, a ¹H NMR spectrum of the crude mixture is taken in d₆ DMSO to confirm the formation of ketoxime. The crude mixture is washed with water to get rid of any inorganic salts and it is air dried, after which the melting point is taken to confirm the formation of pure product.

General synthetic method for 1, 3, 7, 9-10, 12, 15-16

In a mortar, 1.0 mmole of the ketone and 2.4 mmoles (per ketone present) of hydroxylamine hydrochloride is ground together with a pestle. Then, 2.4 mmoles (per ketone present) of crushed sodium hydroxide is added and the mixture is ground further with the addition of 0.1-0.2 mL methanol, for 2 minutes at room temperature. The reaction mixture is left for 5 minutes, after which it is ground for another 2 minutes with 0.1-0.2 mL methanol. At this stage the reaction is monitored by TLC. Upon completion of the reaction, a ¹H NMR spectrum of the crude mixture is taken in d₆ DMSO to confirm the formation of ketoxime. The crude mixture is washed with water to get rid of any inorganic salts and it is air dried, after which the melting point is taken to confirm the formation of pure product.

General synthetic method for 18-20

In a mortar, 1.0 mmole of the ketone and 1.2 mmoles (per ketone present) of hydroxylamine hydrochloride is ground together with a pestle. Then, 1.2 mmoles (per ketone present) of crushed sodium hydroxide is added and the mixture is ground further with the addition of 0.1-0.2 mL methanol, for 2 minutes at room temperature. The reaction mixture is left for 5 minutes, after which it is ground for

another 2 minutes with 0.1-0.2 mL methanol. At this stage the reaction is monitored by TLC. Upon completion of the reaction, a ¹H NMR spectrum of the crude mixture is taken in d_6 DMSO to confirm the formation of ketoxime. The crude mixture is washed with chloroform to extract the water soluble products. The filtrate is evaporated to obtain the compound, after which the melting point is taken to confirm the formation of pure product.

Characterization of the ketoximes

4-acetylbenzonitrile oxime (5): ¹H NMR (δH; d₆ DMSO, 400MHz): 2.17 (3 H, s), 7.81-7.88 (4 H, m), 11.67 (1 H, br. s.).

2-pentanone oxime (18): ¹H NMR (δH; d₆ DMSO, 400MHz): 0.85 (3 H, m), 1.44 (2 H, m), 1.70 (3 H, s), 2.06 (2 H, m), 10.21 (1 H, br. s.).