Supplementary Online Materials

Co-catalytic pyrolysis of biomass and waste triglyceride seed oil waste oil in a novel reactor to produce olefins and aromatics integrated with self-heating and catalyst regeneration processes

Huiyan Zhang,^a Jian Zheng,^a Rui Xiao,^{*a} Dekui Shen,^a Baosheng Jin,^a Guomin Xiao^b and Ran Chen^a

^aMinistry of Education of Key Laboratory of Energy Thermal Conversion and Control, School of Energy and Environment, Southeast University, Nanjing 210096, P.R. China. E-mail: ruixiao@seu.edu.cn; Tel: (86)-025-83795726

^bSchool of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, P.R. China.

Fig. S1 X-Ray diffraction (XRD) patterns before reaction (black line) and after reaction (red line)

Fig. S2 SEM images of the catalysts: (a) before reaction; (b) after reaction

Experimental

According to cold experimental results of the IIFB reactor, when the ratio of height of bed materials to diameter of bed (H₀/D_t) is 3, the operating range of spout-fluidized bed flow pattern was very wide, which is beneficial to the stability of biomass catalytic pyrolysis and char combustion processes.¹ In this work, we used $H_0/D_t=3$, which means that the volume of bed materials is about 360 mL.

Proximate analysis (wt.%)	Ultimate analysis (wt.9

Table S1	Main	characte	eristics	of the	rice st	alk (a	ur-dry l	Jasis)	

	Proximate analysis (wt.%)				Ultimate analysis (wt.%)			
	Fixed carbon	Volatile	Ash	Moisture	С	Н	\mathbf{O}^{a}	Ν
Rice stalk	16.25	66.26	14.54	2.95	35.36	4.78	44.36	0.96
Waste oil	_	-	-	-	79.6	11.9	8.5	-

^a By difference.

Fig. S3 The experimental setup of internally interconnected fluidized bed reactor system: 1. O₂; 2. N₂; 3. Mass flow controller; 4. Anger feeder; 5. Feeding pump; 6,7. Heater; 8. Temperature controller; 9. Cyclone; 10. Ice condenser; 11. Dry ice condenser; 12,21. Cotton wool filter; 13,22. Silica gel filter; 14.GC/MS; 15,24. Date collecting computer; 16. Condenser; 17. Fine particle filter; 18. Particle container; 19. Accumulative flowmeter; 20. Gas mixer; 23. GC/FID/TCD

1. H. Y. Zhang, R. Xiao, Q. W. Pan, Q. L. Song and H. Huang, Chem Eng Technol, 2009, 32, 27-37.