AIE (AIEE) and Mechanofluorochromic Performances of

TPE-methoxylates: Effects of Single Molecular Conformations

Qingkai Qi^a, Yifei Liu^{*b}, Xiaofeng Fang^b, Yumo Zhang^a, Peng Chen^a, Yi Wang^a, Bing Yang^a, Bin Xu^a, Wenjing Tian^a and Sean Xiao-An Zhang^{*a}

 ^a State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China. Fax: +86-0431-85153812; E-mail: seanzhang@jlu.edu.cn
^b College of Chemistry, Jilin University, Changchun 130012, China. Fax: +86-0431-85153812; E-mail: liuyifei@jlu.edu.cn

Electronic Supplementary Information (ESI†)

Contents

Synthesis and Characterizations of diaryl methanones (1-4)
Characterizations of TMOE, TDMOE and TPE
Figure S1. ¹ H NMR spectrum of TMOE in CDCl ₃ solution
Figure S2. ¹³ C NMR spectrum of TMOE in CDCl ₃ solution
Figure S3. ¹ H NMR spectrum of TDMOE in CDCl ₃ solution
Figure S4. ¹³ C NMR spectrum of TDMOE in CDCl ₃ solution
Figure S5. ¹ H NMR spectrum of TPE in CDCl ₃ solution
Figure S6. ¹³ C NMR spectrum of TPE in CDCl ₃ solution
Figure S7. Torsion angle data in (A) TMOE-1 and (B) TMOE-2 crystals7
Figure S8. Calculated HOMO-LUMO bandgaps of TMOE in (A) TMOE-1 and (B)
TMOE-2 crystals using B3LYP/6-31+g(d, p) basis set
Figure S9. PL spectra (A) and XRD patterns (B) of TMOE-2: pristine, ground and
annealed sample (150°C for 1 min)

Characterizations of diaryl methanones (1-4)

4,4'-Dihydroxybenzophenone (1) was synthesized according to the procedure described in literature.^[1] ¹H NMR (300 MHz, DMSO- d_6) δ (ppm): 10.27 (s, 2H), 7.60 (d, J = 8.7 Hz, 4H), 6.87 (d, J = 8.7 Hz, 4H).

4, 4'-Dimethoxybenzophenone (2) was obtained by methoxylation of 1. ¹H NMR (300 MHz, DMSO- d_6) δ (ppm): 7.71 (d, J = 8.9 Hz, 4H), 7.08 (d, J = 8.9 Hz, 4H), 3.85 (s, 6H).

3, 3', 4, 4'-Tetrahydroxybenzophenone (**3**) was synthesized according to the procedure described in the previous literature.^[1] ¹H NMR (300 MHz, DMSO-*d*₆) δ (ppm): 9.72 (s, 2H), 9.34 (s, 2H), 7.16 (d, *J* = 2.1 Hz, 2H), 7.05 (dd, *J* = 8.2, 2.1 Hz, 2H), 6.82 (d, *J* = 8.2 Hz, 2H).

3, 3', 4, 4'-Tetramethoxybenzophenone (**4**) was obtained by methoxylation of **3**. ¹H NMR (300 MHz, DMSO- d_6) δ (ppm): 7.32 (m, 4H), 7.12–7.06 (m, 2H), 3.86 (s, 6H), 3.81 (s, 6H).

Characterizations of TMOE, TDMOE and TPE

Tetra(4-methoxyphenyl)ethylene (TMOE)

¹H NMR (300 MHz, CDCl₃) δ (ppm): 6.93 (d, J = 8.7 Hz, 8H), 6.64 (d, J = 8.7 Hz, 8H), 3.74 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 157.79, 138.38, 136.91, 132.55, 113.03, 55.09.

Tetra(3, 4-dimethoxyphenyl)ethylene (**TDMOE**)

¹H NMR (300 MHz, CDCl₃) δ (ppm): 6.66–6.58 (m, 12H), 3.83 (s, 12H), 3.55 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 148.04, 147.49, 139.02, 136.78, 123.91, 114.90, 110.35, 55.75, 55.69.

Tetraphenylethene (**TPE**)

¹H NMR (500 MHz, CDCl₃) δ (ppm): 7.17–6.95 (m, 20H). ¹³C NMR (125 MHz, CDCl₃) δ (ppm): 143.75, 140.99, 131.36, 127.67, 126.44.

Fig. S1 ¹H NMR spectrum of TMOE in CDCl₃ solution.

Fig. S2 ¹³C NMR spectrum of TMOE in CDCl₃ solution.

Fig. S3 ¹H NMR spectrum of TDMOE in CDCl₃ solution.

Fig. S4 ¹³C NMR spectrum of TDMOE in CDCl₃ solution.

Fig. S5 1 H NMR spectrum of TPE in CDCl₃ solution.

Fig. S6 ¹³C NMR spectrum of TPE in CDCl₃ solution.

Fig. S7 Torsion angle data in (A) TMOE-1 and (B) TMOE-2 crystals.

Fig. S8 Calculated HOMO-LUMO bandgaps of TMOE in (A) TMOE-1 and (B) TMOE-2 crystals using B3LYP/6-31+g(d, p) basis set.

Fig. S9 PL spectra (A) and XRD patterns (B) of TMOE-2: pristine, ground and annealed sample (150° C for 1 min).

Fig. S10 (A) Powder X-ray diffraction patterns of TMOE-1 before and after annealing at 176° C for 10 min, and the XRD patterns of TMOE-1 and TMOE-2 stimulated from their single crystal. (B) DSC curves of TMOE-1 and TMOE-2 crystals.

Fig. S11 Real object illustration of the reversible mechanofluorochromic properties of TMOE with grinding and wetting with ethanol. The pictures were taken under 365 nm UV light irradiation. (a) TMOE-1 pristine crystals; (b) partially ground sample at one side; (c) entirely ground sample; (d) partially recovered sample by wetting with ethanol at the centre ; (e) entirely recovered sample by wetting with ethanol; (f) partially ground sample at the center from the recovered sample.

Fig. S12 (A) PL spectra of TPE crystals before and after grinding. Inset: corresponding digital photos taken under 365 nm UV light irradiation. (B) Powder X-ray diffraction patterns of TPE crystals before and after grinding.

Fig. S13 Analysis of the weak interactions in single crystal structures of (A) TMOE-1, (B) TMOE-2, (C) TDMOE and (D) TPE. C-H $\cdots\pi$ (green line) and C-H \cdots O (orange line).

Reference:

1. L. N. Stanley, US Pat., 3 073 866, 1963.