Electronic Supporting Information

1-Dimensional confinement of Porous

Polyethylenedioxythiophene Using Carbon Nanofiber as a Solid Template: An Efficient Charge Storage Material with Improved Capacitance Retention and Cycle Stability

Bihag Anothumakkool, Siddheshwar N. Bhange, Sreekuttan M. Unni and Sreekumar Kurungot*

Physical & Materials Chemistry Division National Chemical Laboratory, Pune-411008,

411008, India. E-mail: k.sreekumar@ncl.res.in

Calculations of specific capacitance from cyclic voltamatry and chrono chargedischarge methods.¹

Capacitance calculated from the CV and charge-discharge for the hybrid material is converted into specific capacitance in terms of the weight of the active material (PEDOT) in the composites.

Capacitance (F g^{1}) was calculated from the cyclic voltamogram using the following equation:

$$C = 2 * \left(\frac{I}{Scan Rate\left(\frac{dv}{dt}\right) * V * M}\right)$$

I = Average current during the anodic and cathodic sweep.

V= Potential window (1 V)

M= Weight of the active electrode material coated in one of the electrodes (g)

Capacitance was also calculated from the charge-discharge experiments using the following equation:

$$C = 2 * \left(\frac{I}{\frac{dV}{dt} * M}\right)$$

 $\begin{pmatrix} \frac{dv}{dt} \end{pmatrix} = Calculated from the slope of Discharge curve after the IR drop$ I = Constant current used for charging and discharging

M = Weight of active electrode material in one of the electrode

Energy density (E_d) and power density (P_d) are calculated from the capacitance value obtained by cyclic voltamatry²

Energy density
$$E_d$$
 (Wh Kg^{-1}) $= \frac{1}{8} C_s V^2$

 C_s = Specific capacitance calculated by cyclic voltamatry

Power density
$$P_d$$
 (W Kg⁻¹) = $\frac{E_d}{V}$ ($\frac{dv}{dt}$)

V= Voltage window

 $\frac{dv}{dt}$ = scan rate (V s⁻¹)

Calculation of the imaginary capacitance and time constant from the EIS measurements: ^{1,3}

Imaginary capacitance
$$C''(w) = \frac{Z'(W)}{\omega |Z(w)|^2}$$

Where Z(w) is called impedance modulus $|Z(w)|^2 = Z(w)'^2 + Z(w)'^2$

 $Z'(W) = real Impedance(\Omega)$

 $Z''((w) = Imaginary Impedance (\Omega)$

$$\omega = 2\pi f$$
 where $f = AC$ frequency (H_z)

In the plot of the imaginary capacitance *Vs* frequency, a maxima occurs at a particular frequency which is known as the relaxation frequency (f_0). Time constant (t) of the material is given by the reciprocal of (f_0)

Calculation of the four probe electrical conductivity:

Conductivity was measured by placing the sample pellets on a non-conducting surface and the measurement was done by the four probe method by using the following equations:

$$K = \frac{1}{\rho}$$

$$\rho = \frac{2 \pi \mathrm{S} \frac{V}{I}}{G_7 \left(\frac{\mathrm{W}}{\mathrm{S}}\right)}$$

where K =conductivity (S cm⁻¹)

$$\rho = \text{resistivity} (\Omega \text{ cm})$$

 $G_7\left(\frac{W}{S}\right) = \text{correction factor} = \frac{2S}{W}\log_e 2$, when sample thickness is less

than 0.5mm

W = thickness of the pellet
S = Probe spacing (2mm)
V = voltage (V)
I = current (A)

Figure S1. SEM images of a) CNF b) PEDOT.

Figure S2. SEM images of the hybrid materials: a) CP-25 b) CP-40 C) CP-60 d) CP-80

Figure S3. Nitrogen adsorption isotherm of CNF, PEDOT and their hybrids.

Figure S4. XRD patterns of CNF, CP-25, CP-40, CP-60, CP-80 and PEDOT.

Figure S5. Raman spectra of the samples which compare (a) D band and (b) 2D band shifts of CP-25, CP-40, CP-60, CP-80 and PEDOT ..

Figure S6. FT-IR spectra of CNF, CP-25, CP-40, CP-60, CP-80 and PEDOT.

Figure S7. XPS survey scan spectra of CP-40 and PEDOT.

Figure S8. TGA of CNF, CP-25, CP-40, CP-60, CP-80 and PEDOT.

Figure S9. Initial and final charge-discharge cycles profile of CP-40 during the 4500 stability cycling.

1. **Conway, B. E.**, *Electrochemical Supercapacitors Scientific Fundamentals and Technological Applications*. Springer: 1999.

- 2. Jang, J. H.; Kato, A.; Machida, K.; Naoi, K., J. Electrochem. Soc. 2006, 153, A321-A328.
- 3. Taberna, P. L.; Simon, P.; Fauvarque , J. F., J. Electrochem. Soc. **2003**, 150, A292-A300.