Double-headed nucleotides in DNA-zipper structures; base-base interactions and UV-induced cross-coupling in the minor groove

Charlotte S. Madsen, Lise J. Nielsen, Nikolai S. Pedersen, Anne Lauritsen and Poul Nielsen*

Supporting information

Index

1. MALDI-data for oligonucleotides	S2
2. Exact $T_{\rm m}$ -values	S3-S4
3. HPLC chromatograms of the T-T dimer	S5
4. Selected 1D and 2D NMR-spectra for the compounds 2-14	S6-S28

MALDI-data for oligonucleotides

Sequence	MW calculated	MW found
5'-GCG AAT ^A ATG CG	3528.4	3528.3
5'-GCG AAT AT ^A G CG	3528.4	3527.4
5'-CGC ATA TT ^A C GC	3439.3	3435.4
5'-CGC ATA T ^A TC GC	3439.3	3441.5
5'-CGC AT ^A A T ^A TC GC	3586.4	3586.4
5'-GCG AAT ^A AT ^A G CG	3675.5	3675.2
5'-GCG AA <mark>T^C</mark> ATG CG	3504.3	3499.9
5′-GCG AAT A <mark>T^C</mark> G CG	3504.3	3509.1
5'-CGC ATA T <mark>T^CC GC</mark>	3504.3	3503.0
5'-CGC ATA <mark>T^C</mark> TC GC	3413.6	3418.1
5'-CGC A <mark>T^CA T^CTC GC</mark>	3413.6	3415.9
5'-GCG AA <mark>T^C AT^CG CG</mark>	3536.7	3538.9
5'-GCG AAT ^{mp} ATG CG	3491.7	3490.9
5'-GCG AAT AT ^{mp} G CG	3402.7	3401.5
5'-CGC ATA TT ^{mp} C GC	3402.7	3402.9
5'-CGC ATA T ^{mp} TC GC	3514.8	3515.7
5'-CGC AT ^{mp} A T ^{mp} TC GC	3491.7	3592.4
5'-GCG AAT ^{mp} AT ^{mp} G CG	3605.5	3604.7

 $\textbf{Table S1.} \text{ MALDI-MS of synthesized oligonucleotides containing monomer } \textbf{T}^{A}, \textbf{T}^{C}, \textbf{T}^{mp}.$

Exact T_m-values

					$\Delta T_{ m m}/^{ m o}{ m C}^a \left[\Delta\Delta T_{ m m} ight]/^{ m o}{ m C}^b$		
Entry	Zipper	ON	Duplex	X=	T ^C	T ^A	T ^{mp}
0		T1 T2	5'-d(CGC ATA TTC GC) 3'-d(GCG TAT AAG CG)		46.2	46.2	46.2
1		T1 X1	5'-d(CGC ATA TTC GC) 3'-d(GCG X AT AAG CG)		42.0 -4.2	39.3 -5.9	45.2 -1.0
2		T1 X2	5'-d(CGC ATA TTC GC) 3'-d(GCG TAX AAG CG)		40.6 -5.6	39.3 -5.9	45.7 -0.5
3		T1 X3	5'-d(CGC ATA TTC GC) 3'-d(GCG XAX AAG CG)		35.8 -10.4	30.7 -14.5	44.7 -1.5
4		X4 T2	5'-d(CGC ATA T X C GC) 3'-d(GCG TAT AAG CG)		43.0 -3.2	39.2 -6.0	44.7 -1.5
5		X5 T2	5'-d(CGC ATA X TC GC) 3'-d(GCG TAT AAG CG)		41.2 -5.0	39.6 -5.6	44.2 -2.0
6		X6 T2	5'-d(CGC AXA XTC GC) 3'-d(GCG TAT AAG CG)		35.2 -11.0	30.2 -15.0	43.0 -3.2
7	(-1)	X5 X2	5'-d(CGC ATA X TC GC) 3'-d(GCG TA X AAG CG)		36.8 -9.4 [+1.2]	33.1 -12.1 [-0.6]	43.2 -3.0 [-0.5]
8	(-2)	X4 X2	5'-d(CGC ATA T X C GC) 3'-d(GCG TA X AAG CG)		37.7 -8.5 [+0.3]	35.7 -9.5 [+2.4]	44.3 -1.9 [+0.1]
9	(-3)	X5 X1	5'-d(CGC ATA XTC GC) 3'-d(GCG XAT AAG CG)		38.9 -7.3 [+1.9]	37.3 -7.9 [+3.6]	42.2 -4.0 [-1.0]
10	(-4)	X4 X1	5'-d(CGC ATA TXC GC) 3'-d(GCG XAT AAG CG)		37.8 -8.4 [-1.0]	30.6 -14.6 [-2.7]	43.1 -3.1 [-0.6]
11	(-2)/(-4)	X4 X3	5'-d(CGC ATA TXC GC) 3'-d(GCG XAXAAG CG)		32.0 -14.2 [-0.6]	25.1 -20.1 [+0.4]	43.0 -3.2 [-0.2]
12	(-1)/(-3)	X5 X3	5'-d(CGC ATA XTC GC) 3'-d(GCG XAX AAG CG)		34.2 -12.0 [+3.4]	29.3 -15.9 [+4.2]	42.1 -4.1 [-0.6]
13	(-3)/(-1)	X6 X1	5'-d(CGC AXA XTC GC) 3'-d(GCG XAT AAG CG)		31.9 -14.3 [+0.9]	29.3 -15.9 [+5.0]	41.1 -5.1 [-0.9]
14	(-1)/(+1)	X6 X2	5'-d(CGC AXA XTC GC) 3'-d(GCG TAX AAG CG)		27.6 -18.6 [-2.0]	26.2 -19.0 [+1.9]	43.2 -3.1 [+0.6]
15	(-1)/(-3)/ (+1)/(-1)	X6 X3	5'-d(CGC AXA XTC GC) 3'-d(GCG XAX AAG CG)		27.7 -18.5 [+2.9]	23.0 -22.2 [+7.3]	40.7 -5.5 [-0.8]

Table S2. Thermal stability data of modified DNA duplexes (corresponding to Table 1).

^{*a*} Differences in melting temperatures as compared to the unmodified duplex. $\Delta T_{\rm m} = T_{\rm m(xy)} - T_{\rm m(T1:T2)}$. Melting temperatures were obtained from the maxima of the first derivatives of the melting curves (A_{260} vs. temperature) recorded in a medium salt buffer (Na₂HPO₄ (2.5 mM), NaH₂PO₄ (5 mM), NaCl (100 mM), EDTA (0.1 mM), pH 7.0) using 1.0 μ M concentrations of each strand. ^{*b*} Differences in melting temperatures as compared to singly modified duplexes; $\Delta \Delta T_{\rm m} = \Delta T_{\rm m(xy)} - (\Delta T_{\rm m(x:T2)} + \Delta T_{\rm m(T1:y)})$.

Table S3. Mixed (-3) zipper motifs (corresponding to Table 2).

	5'- CGC ATA YTC GC 3'- GCG XAT AAG CG						
$\Delta T_{ m m}$ /°C a [$\Delta\Delta T_{ m m}$]/°C b							
X\Y	Т	T	T ^C	$\mathbf{T}^{\mathbf{A}}$	$\mathbf{T}^{\mathbf{mp}}$	\mathbf{T}^{Ph}	
Т	46.2	ref	41.2 -5.0	39.6 -5.6	44.2 -2.0	ref	
T	ref	ref	41.7 -4.5 [+5.8]	38.3 -6.9 [+4.3]	39.1 -7.0 [+0.2]	ref	
T ^C	42.0 -4.2	40.3 -5.9 [+3.7]	38.9 -7.3 [+1.9]	34.9 -10.3 [-0.2]	40.2 -5.9 [+0.2]	42.7 -3.5 [+5.2]	
TA	39.3 -5.9	37.6 -7.6 [+3.7]	35.2 -10.0 [+0.6]	37.3 -7.9 [+3.6]	37.0 -9.1 [-1.2]	38.7 -6.5 [+3.9]	
T ^{mp}	45.2 -1.0	40.1 -6.1 [+0.3]	40.3 -5.8 [-1.7]	38.1 -8.1 [-1.2]	42.2 -4.0 [-1.0]	40.5 -5.6 [-0.2]	
T ^{Ph}	ref	ref	43.8 -2.4[+5.8]	41.2 -4.0 [+4.8]	40.7 -5.4 [-0.3]	ref	

^{*a,b*} See Table S2. "ref" corresponds to data taken from ref. 8.

HPLC chromatograms of T-T dimer

Figure S1. IC-HPLC profiles (60°C) of the (-3) T^T/T^T zipper duplex before (left) and after (right) irradiation (254 nm, 15 min.).

Table S4. $T_{\rm m}$ measurements before and after UV irradiation (254 nm).

Sequence	T _m (before)	T _m (after)	$\Delta T_{\rm m}^{\ a}$
5'-d(CGC ATA TTC GC) 3'-d(GCG TAT AAG CG)	45.8	45.5	-0.3
5'-d(CGC ATA T ^T TC GC) 3'-d(GCG T ^T AT AAG CG)	42.1	39.5	-2.6

^{*a*} Melting temperatures ($T_{\rm m}$ values/ °C) was obtained from the maxima of the first derivatives of the melting curves (A_{260} vs. temperature) recorded in a medium salt buffer (Na₂HPO₄ (7.5 mM), NaCl (100 mM), EDTA (0.1 mM), pH 7.0) using 1.0 µM concentrations of each strand. $\Delta T_{\rm m} = T_{\rm m(after)} - T_{\rm m(before)}$.

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

Electronic Supplementary Material (ESI) for RSC Advances This journal is © The Royal Society of Chemistry 2013

