Electronic Supplementary Information

The Baylis-Hillman acetates in organic synthesis: Development of a facile strategy for synthesis of functionalized unsaturated benzo-fused macrocyclic ethers and [n] metacyclophanes
Deevi Basavaiah,* Katta Santosh Kumar, Kunche Aravindu and Balthu Lingaiah
School of Chemistry, University of Hyderabad
Hyderabad-500 046, India

Contents Page
(1) General \& experimental procedures with all spectral data 2-53
a) Crystal data \& ORTEP diagram of compound $\mathbf{6 a}$ 22-23
b) Crystal data \& ORTEP diagram of compound $\mathbf{6 c - E}$ 25
c) Crystal data \& ORTEP diagram of compound $\mathbf{6 c - Z}$ 26-27
d) Crystal data \& ORTEP diagram of compound $\mathbf{6 k}$ 36-37
e) Crystal data \& ORTEP diagram of compound $\mathbf{6 m}$ 38-39
f) Crystal data \& ORTEP diagram of compound $\mathbf{6 n}$ 40
g) Crystal data \& ORTEP diagram of compound $6 \mathbf{0}$ 41
h) Crystal data \& ORTEP diagram of compound 7a-E 42
i) Crystal data \& ORTEP diagram of compound 7a-Z 43-44
j) Crystal data \& ORTEP diagram of compound $\mathbf{7 g}$ 51-52
(2) NMR Spectra 54-121

EXPERIMENTAL SECTION

General Remarks: Melting Points were recorded on a Superfit (India) capillary melting point apparatus and were uncorrected. Infrared spectra were recorded on a JASCO FT / IR 5300 spectrophotometer. All the spectra were calibrated against polystyrene absorption at $1601 \mathrm{~cm}^{-1}$. Solid samples were recorded as KBr wafers and liquid samples as thin film between NaCl plates. ${ }^{1} \mathrm{H}$ NMR (400 MHz) and ${ }^{13} \mathrm{C}$ NMR (100 MHz) spectra were recorded on a Bruker-AVANCE400 spectrometer in deuterochloroform $\left(\mathrm{CDCl}_{3}\right)$ with tetramethylsilane (TMS, $\delta=0$) as an internal standard for ${ }^{1} \mathrm{H}$ NMR and chloroform- d middle peak of the triplet $(\delta=77.10 \mathrm{ppm})$ as an internal standard for ${ }^{13} \mathrm{C}$ NMR. Elemental analyses were recorded on a Thermo-Finnigan Flash EA 1112 analyzer. Mass spectra were recorded on Shimadzu-LCMS-2010A mass spectrometer. The X-ray diffraction measurements were carried out at 298 K and 100 K on a Bruker SMART APEX CCD area detector system or Oxford Diffraction Xcalibur Eos Gemini diffractometer equipped with a graphite monochromator and a Mo-K α fine-focus sealed tube ($\lambda=0.71073 \AA$).

General procedure: Synthesis of 3-allyloxy-2-[(2E)-3-(2-allyloxyphenyl)-2-methoxycarbo-nylprop-2-en-1-yl]-5,5-dimethylcyclohex-2-enone (5a): A mixture of methyl 3-acetoxy-3-(2-allyloxyphenyl)-2-methylenepropanoate ($\mathbf{1 a}, 0.58 \mathrm{~g}, 2 \mathrm{mmol}$), 5,5 -dimethyl-1,3-cyclohexanedione ($2 \mathrm{a}, 0.28 \mathrm{~g}, 2 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.276 \mathrm{~g}, 2 \mathrm{mmol})$ in DMF (3 mL) was stirred at room temperature for 6 h . Then allyl bromide ($4 \mathrm{a}, 1.21 \mathrm{~g}, 0.87 \mathrm{~mL}, 10 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.276 \mathrm{~g}, 2$ $\mathrm{mmol})$ were added and stirring continued for 4 h . Then the reaction mixture was diluted with water (10 mL) and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). Combined organic layer was washed with saturated NaCl solution ($3 \times 10 \mathrm{~mL}$) and was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated and the crude product, thus obtained, was purified by silica gel column chromatography (30% ethyl acetate in hexanes) to furnish the title compound (5a) as a colorless viscous liquid in $68 \%(0.558 \mathrm{~g})$ yield.

IR (neat) : v 1712, 1641, $1614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.96(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 2 \mathrm{H})$, $2.25(\mathrm{~s}, 2 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.12-$ $5.31(\mathrm{~m}, 3 \mathrm{H}), 5.35-5.46(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.13(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, 6.86-6.93 (m, 1H), 7.18-7.24 (m, 1H), 7.37 (d, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.45,28.39,31.91,39.30,50.24,51.77,68.21,69.00,111.71,116.88,117.28$, $117.57,120.28,125.61,129.25,130.35,132.22,133.15,133.31,133.97,156.39,169.19,169.48$, 197.29; LCMS (m/z) : $411(\mathrm{M}+\mathrm{H})^{+}$.

In addition, peaks at $\delta 1.09(\mathrm{~s}), 3.60(\mathrm{~s}), 3.75(\mathrm{~s})$ and 6.73 (s) with low intensity also appeared indicating that they arise from minor (Z)-isomer $(\approx 5 \%$)
$E: Z$ (95:5) Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.74 \& \underline{6.73}$.
3-Allyloxy-2-[(2E)-3-(2-allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]cyclohex-2enone (5b):

Yield: 67%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; colorless liquid; IR (neat) : v $1711,1645,1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.71-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.37(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $3.54(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.37(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.12-5.31(\mathrm{~m}, 3 \mathrm{H})$, $5.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.72-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.97-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.87-$ $6.92(\mathrm{~m}, 1 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 20.74,21.50,25.43,36.34,51.74,68.31,68.96,111.62,117.24,117.61,118.06$, $120.22,125.72,129.15,130.23,132.46,132.97,133.30,134.00,156.20,169.12,171.10,197.42$;

LCMS (m/z) : $383(\mathrm{M}+\mathrm{H})^{+}$.

In addition, peaks at $\delta 1.95-2.06(\mathrm{~m}), 2.59(\mathrm{t}), 3.45(\mathrm{~s}), 3.59(\mathrm{~s}), 4.49(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 6.72(\mathrm{~s})$ and $7.16(\mathrm{~d}, J=8.0 \mathrm{~Hz})$ with low intensity also appeared indicating that they arise from minor (Z) isomer $(\approx 5 \%)$.
$E: Z$ (95:5) Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.71 \& \underline{6.72}$.
3-Allyloxy-2-[(2E)-3-(2-allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]cyclopent-2enone (5c):

Yield: 58%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; pale yellow solid; $\mathrm{mp}: 84-86^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v 1712,1682$, $1626 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.37-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.57-2.64(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 4.55-4.65(\mathrm{~m}, 4 \mathrm{H}), 5.20-5.35(\mathrm{~m}, 3 \mathrm{H}), 5.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.94(\mathrm{~m}, 1 \mathrm{H})$, 5.98-6.13 (m, 1H), 6.82-6.97 (m, 2H), 7.20-7.26 (m, 1H), $7.30(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.65,24.73,33.36,51.85,69.07,69.67,111.89,117.30$, $117.98,118.45,120.41,125.24,129.61,129.84,130.26,132.29,133.24,135.33,156.56,168.80$, 183.51, 203.88; LCMS (m/z) : $369(\mathrm{M}+\mathrm{H})^{+}$.
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra did not indicate the presence of any significant amounts of minor (Z) isomer.

3-Allyloxy-2-[(2E)-3-(2-allyloxy-5-bromophenyl)-2-methoxycarbonylprop-2-en-1-yl]-5,5-di-methylcyclohex-2-enone (5d):

Yield: 56%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; pale yellow solid; $\mathrm{mp}: 78-80^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v 1711,1626$, $1599 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.00(\mathrm{~s}, 6 \mathrm{H}), 2.14(\mathrm{~s}, 2 \mathrm{H}), 2.31(\mathrm{~s}, 2 \mathrm{H}), 3.51(\mathrm{~s}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.16-5.32(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{~d}, J=$ $17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.95-6.10(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.8 \&$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.60(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 21.65$, $28.43,31.89,39.24,50.19,51.87,68.27,69.29,112.45,113.52,116.43,117.61,117.66,127.62$, $131.63,132.01,132.70,132.80,133.00,133.59,155.46,168.96,169.46,197.02 ;$ LCMS (m/z) : $\left.489(\mathrm{M}+\mathrm{H})^{+}, 491\left[(\mathrm{M}+\mathrm{H})^{+}+2\right)\right]$.
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra did not indicate the presence of minor (Z)-isomer.
3-Allyloxy-2-[(2E)-3-(2-allyloxy-5-bromophenyl)-2-methoxycarbonylprop-2-en-1-yl]cyclo-hex-2-enone (5e):

Yield: 62%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; pale yellow solid; $\mathrm{mp}: 80-82{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v 1718,1626$, $1601 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.78-1.89 \& \underline{1.99-2.03}(2 \mathrm{~m}, 2 \mathrm{H}), 2.24 \& \underline{2.39}(2 \mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.44 \& \underline{2.59}(2 \mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), \underline{3.46} \& 3.50(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.62} \& 3.77(2 \mathrm{~s}, 3 \mathrm{H}),[4.45$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}), 4.53(\mathrm{~d}, J=4.8 \mathrm{~Hz}) \& \underline{4.55-4.60}(\mathrm{~m}),(4 \mathrm{H})], 5.16-5.32(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{~d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.77-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.95-6.10(\mathrm{~m}, 1 \mathrm{H}), \underline{6.60} \& 7.57(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta}, \underline{6.70} \& 6.71(2 \mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.30(\mathrm{dd}, J=8.8 \& 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~s}, 1 \mathrm{H}){ }^{*} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.82$, $21.76,25.46,36.34,51.93,68.46,69.31,112.35,113.46,117.66,117.82,127.75,131.57,132.23$, 132.78, 132.86, 133.80, 155.36, 168.98, 171.17, 197.22; LCMS (m/z) : $461(\mathrm{M}+\mathrm{H})^{+}, 463$ $\left[(\mathrm{M}+\mathrm{H})^{+}+2\right]$.

* Unresolved doublet.

The underlined chemical shift values with low intensity arise due to the presence of minor (Z) isomer ($\approx 6 \%$).
${ }^{\Delta} E: Z$ Ratio (94:6) is determined by the integration of isomeric olefinic protons at $\delta 7.57 \& \underline{6.60}$.
3-Allyloxy-2-[(2E)-3-(2-allyloxy-5-chlorophenyl)-2-methoxycarbonylprop-2-en-1-yl]-5,5-dimethylcyclohex-2-enone (5f):

Yield: 66%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; pale yellow solid; $\mathrm{mp}: 70-72{ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): v 1712,1626$, $1599 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.99 \& \underline{1.09}(2 \mathrm{~s}, 6 \mathrm{H}), 2.14 \& \underline{2.25}(2 \mathrm{~s}, 2 \mathrm{H}), 2.31 \&$ $\underline{2.45}(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.41} \& 3.51(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.62} \& 3.76(2 \mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=$ $4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.33(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.95-6.09(\mathrm{~m}, 1 \mathrm{H})$, $\underline{6.62} \& 7.61(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta}, \underline{6.70} \& 6.76(2 \mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}),\left[\underline{7.11(\mathrm{~d})}{ }^{*} \& 7.16(\mathrm{dd}),(J=8.8 \& 2.0\right.$ $\mathrm{Hz}),(1 \mathrm{H})], 7.32(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 21.69,28.45,31.93,39.30$, $50.24,51.90,68.29,69.42,113.08,116.51,117.63,117.72,125.16,127.20,128.70,129.98$, $132.17,132.90,133.04,133.58,155.03,169.01,169.45,197.07 ;$ LCMS (m/z) : $445(\mathrm{M}+\mathrm{H})^{+}, 447$ $\left.\left[(\mathrm{M}+\mathrm{H})^{+}+2\right)\right]$.

* Unresolved doublet of doublet.

The underlined chemical shift values with low intensity arise due to the presence of minor (Z)isomer ($\approx 3 \%$).
${ }^{\Delta} E: Z(97: 3)$ Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.61 \& \underline{6.62}$.

3-Allyloxy-2-[(2E)-3-(2-allyloxy-5-chlorophenyl)-2-methoxycarbonylprop-2-en-1-yl]cyclo-hex-2-enone (5g):

Yield: 62%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 86-88{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): v 1716,1624$, $1599 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.78-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.43(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.50(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.44(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.53(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-$ $5.32(\mathrm{~m}, 3 \mathrm{H}), 5.38(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.92(\mathrm{~m}, 1 \mathrm{H}), 5.95-6.09(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.27(\mathrm{~s}, 1 \mathrm{H})^{*}, 7.58(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $20.82,21.74,25.45,36.35,51.89,68.43,69.40,113.01,117.61,117.81,125.04,127.30,128.61$, $129.99,132.32,132.91,133.79,154.89,168.96,171.10,197.18 ;$ LCMS (m/z) : $417(\mathrm{M}+\mathrm{H})^{+}, 419$ $\left.\left[(\mathrm{M}+\mathrm{H})^{+}+2\right)\right]$. . It merges with CHCl_{3} peak.
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra did not indicate the presence of minor (Z)-isomer.
3-Allyloxy-2-[(2E)-3-(2-allyloxy-3-methoxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-5,5-dimethylcyclohex-2-enone (5h):

Yield: 57%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; colorless liquid; IR (neat) : v $1712,1645,1614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.97 \& \underline{1.09}(2 \mathrm{~s}, 6 \mathrm{H}), \underline{2.05} \& 2.12(2 \mathrm{~s}, 2 \mathrm{H}), 2.28 \& \underline{2.45}(2 \mathrm{~s}, 2 \mathrm{H})$, $\underline{3.46} \& 3.54(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.58} \& 3.74(2 \mathrm{~s}, 3 \mathrm{H}), \underline{3.81} \& 3.84(2 \mathrm{~s}, 3 \mathrm{H}), \underline{4.39} \& 4.41(2 \mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.46 \& \underline{4.55}(2 \mathrm{~d}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.14-5.27(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.90$
$(\mathrm{m}, 1 \mathrm{H})$, 6.00-6.14 (m, 1H), $6.67 \& 7.71(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta},[6.70-6.82(\mathrm{~m}), 6.85(\mathrm{~d}, J=8.0 \mathrm{~Hz}) \& 6.90-$ $7.11(\mathrm{~m}),(3 \mathrm{H})],{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 21.60,28.39,31.92,39.31,50.25,51.79,55.85$, 68.24, 74.34, 112.22, 116.58, 117.61, 117.72, 122.11, 123.51, 130.86, 133.00, 133.13, 133.77, $134.27,146.25,152.62,169.06,169.52,197.27 ;$ LCMS (m/z) : $441(\mathrm{M}+\mathrm{H})^{+}$.

The underlined chemical shift values with low intensity arise due to the presence of minor (Z) isomer ($\approx 5 \%$).
${ }^{\Delta} E: Z$ (95:5) Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.71 \& \underline{6.67}$.
3-Allyloxy-2-[(2E)-3-(2-allyloxy-3-methoxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-cyclohex-2-enone (5i):

Yield: 62%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; colorless liquid; IR (neat) : v $1712,1647,1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.74-1.85 \& \underline{1.99-2.06}(2 \mathrm{~m}, 2 \mathrm{H}),[2.21(\mathrm{t}, J=6.8 \mathrm{~Hz}), \underline{2.30-2.40}(\mathrm{~m})$, $(2 \mathrm{H})], 2.41 \& \underline{2.61}(2 \mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), \underline{3.41} \& 3.53(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.59} \& 3.75(2 \mathrm{~s}, 3 \mathrm{H}), \underline{3.82} \& 3.84$ $(2 \mathrm{~s}, 3 \mathrm{H}), \underline{4.39} \& 4.41(2 \mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.45 \& \underline{4.56}(2 \mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), \underline{4.90-5.02} \& 5.13-$ $5.28(2 \mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.90(\mathrm{~m}, 1 \mathrm{H}), 6.00-6.13(\mathrm{~m}, 1 \mathrm{H}), \underline{6.63} \& 7.68(2 \mathrm{~s}$, $1 \mathrm{H})^{\Delta},[6.71-6.81(\mathrm{~m}) \& 6.84(\mathrm{dd}, J=6.8 \& 2.0 \mathrm{~Hz}),(1 \mathrm{H})], 6.90-7.02(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.75,21.60,25.46,36.36,51.77,55.83,68.37,74.26,112.12,117.68,117.80$, $122.06,123.44,130.92,132.95,133.20,133.80,134.26,146.05,152.52,169.02,171.20,197.44 ;$

LCMS (m/z) : $413(\mathrm{M}+\mathrm{H})^{+}$.
The underlined chemical shift values with low intensity are attributed to the presence of minor (Z)-isomer ($\approx 7 \%$).
${ }^{\Delta} E: Z$ Ratio (93:7) is determined by the integration of isomeric olefinic protons at $\delta 7.68$ and 6.63 .
3-Allyloxy-2-[(2E)-3-(2-allyloxy-3-methoxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-cyclopent-2-enone (5j):

Yield: 65%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; colorless liquid; IR (neat) : v $1712,1689,1631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): δ 2.37-2.45 \& 2.46-2.52 ($2 \mathrm{~m}, 2 \mathrm{H}$), 2.59-2.66 \& 2.69-2.74 (2m, 2 H), $\underline{3.30} \& 3.33(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.59} \& 3.77(2 \mathrm{~s}, 3 \mathrm{H}), \underline{3.82} \& 3.85(2 \mathrm{~s}, 3 \mathrm{H}), \underline{4.39} \& 4.46(2 \mathrm{~d}, J=6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.59 \& \underline{4.68}(2 \mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.14-5.41(\mathrm{~m}, 4 \mathrm{H}), 5.82-5.98(\mathrm{~m}, 1 \mathrm{H}), 6.00-6.13(\mathrm{~m}, 1 \mathrm{H})$, $\underline{6.71} \& 7.85(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta}, \underline{6.73} \& 6.87(2 \mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), \underline{6.81} \& 6.92(2 \mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-$ $7.04(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.53,24.61,33.24,51.78,55.73,69.64,74.29$, $112.44,117.68,117.93,118.11,121.81,123.61,130.38,130.53,132.17,134.04,135.33,146.23$, 152.56, 168.51, 183.58, 203.82; LCMS (m/z) : $399(\mathrm{M}+\mathrm{H})^{+}$.

The underlined chemical shift values with low intensity are due to the presence of minor (Z)isomer ($\approx 5 \%$).
${ }^{\Delta} E: Z(95: 5)$ Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.85$ \& $\underline{6.71}$.

2-[(2E)-3-(2-Allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-3-(but-3-enyloxy)-5,5-di-methylcyclohex-2-enone (5k): A mixture of methyl 3-acetoxy-3-(2-allyloxyphenyl)-2methylenepropanoate (1a, $0.58 \mathrm{~g}, 2 \mathrm{mmol}$), 5,5 -dimethyl-1,3-cyclohexanedione ($2 \mathrm{a}, 0.28 \mathrm{~g}, 2$ $\mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.276 \mathrm{~g}, 2 \mathrm{mmol})$ in DMF (3 mL) was stirred at room temperature for 6 h . Then 4-bromo-1-butene ($4 \mathbf{b}, 0.54 \mathrm{~g}, 0.4 \mathrm{~mL}, 4 \mathrm{mmol}$) and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.276 \mathrm{~g}, 2 \mathrm{mmol})$ were added and heated to $80{ }^{\circ} \mathrm{C}$ for 2 h . Then the reaction mixture was diluted with water (10 mL) and extracted with ethyl acetate ($3 \times 25 \mathrm{~mL}$). Combined organic layer was washed with saturated

NaCl solution ($3 \times 10 \mathrm{~mL}$) and was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated and the crude product thus obtained was purified by silica gel column chromatography (30% ethyl acetate in hexanes) to afford compound $5 \mathbf{k}$, in $56 \%(0.471 \mathrm{~g})$ as a colorless liquid.

IR (neat) : v 1714, 1651, $1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.97 \& \underline{1.10}(2 \mathrm{~s}, 6 \mathrm{H}),[(2.09$ (s), 2.23-2.31 (m) \& 2.41-2.49 (m), (6H))], $3.42 \& 3.55(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.58} \& 3.74(2 \mathrm{~s}, 3 \mathrm{H}), 3.85 \&$ $\underline{4.01}(2 \mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), \underline{4.48-4.52} \& 4.53-4.59(2 \mathrm{~m}, 2 \mathrm{H}), 4.98-5.07 \& \underline{5.07-5.16}(2 \mathrm{~m}, 2 \mathrm{H})$, $\underline{5.21-5.24} \& 5.24-5.30(2 \mathrm{~m}, 1 \mathrm{H}), \underline{5.35-5.38} \& 5.39-5.46(2 \mathrm{~m}, 1 \mathrm{H}), 5.61-5.73 \& 5.75-5.86(2 \mathrm{~m}$, $1 \mathrm{H}), 5.98-6.12(\mathrm{~m}, 1 \mathrm{H}), \underline{6.70} \& 7.75(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta},[\underline{6.81} \& 6.84(2 \mathrm{~d}, J=8.4 \mathrm{~Hz}) \& 6.87-6.93(\mathrm{~m})$, 2H], [7.15-7.25 (m) \& $\left.7.38(\mathrm{~d}, J=7.6 \mathrm{~Hz})^{*}, 2 \mathrm{H}\right] ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 21.37, \underline{27.04}$, $28.40, \underline{28.64}, 31.76, \underline{32.06}, 33.72, \underline{34.03}, 39.40,50.13, \underline{51.35}, 51.69,67.08, \underline{67.23}, 68.92, \underline{69.03}$, $111.63, \underline{111.93}, \underline{115.30}, 116.36, \underline{117.08}, 117.22,117.39, \underline{117.67}, 120.21, \underline{120.34}, 125.48, \underline{128.20}$, $\underline{128.68}, 129.23,130.35,132.19, \underline{132.51}, 133.25, \underline{133.43}, 133.64,133.69, \underline{155.69}, 156.36,169.10$, $169.48, \underline{170.26}, \underline{170.85}, \underline{197.18}, 197.20 ;$ LCMS (m/z): $425(\mathrm{M}+\mathrm{H})^{+}$.

* It looks like unresolved doublet of doublet.

The underlined chemical shift values with low intensity arise due to the presence of minor (Z)isomer ($\approx 20 \%$).
${ }^{\Delta} E: Z(80: 20)$ Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.75$ \& $\underline{6.70}$.

2-[(2E)-3-(2-Allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-3-(but-3-enyloxy)cyclohex-2-enone (5l):

Yield: 60%; reaction time: $(6 \mathrm{~h}+2 \mathrm{~h})$; colorless liquid; IR (neat) : v 1712, $1643,1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.68-1.79 \& \underline{1.98-2.06}(2 \mathrm{~m}, 2 \mathrm{H}),[(2.17(\mathrm{t}, J=6.4 \mathrm{~Hz}), 2.22-2.33$ $(\mathrm{m}), 2.36(\mathrm{t}, J=6.0 \mathrm{~Hz}), \underline{2.42-2.49}(\mathrm{~m}) \& \underline{2.59}(\mathrm{t}, J=6.4 \mathrm{~Hz}),(6 \mathrm{H}))], \underline{3.42} \& 3.54(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.59}$ $\& 3.76(2 \mathrm{~s}, 3 \mathrm{H}), 3.85 \& \underline{4.03}(2 \mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), \underline{4.49} \& 4.55(2 \mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.98-5.14$ $(\mathrm{m}, 2 \mathrm{H}), 5.20-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.35-5.47(\mathrm{~m}, 1 \mathrm{H}), 5.61-5.74 \& \underline{5.76-5.84}(2 \mathrm{~m}, 1 \mathrm{H}), 5.97-6.12(\mathrm{~m}$, $1 \mathrm{H}), \underline{6.69} \& 7.72(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta}, 6.79-6.93(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $: \delta 20.58, \underline{20.83}, 21.32,25.33, \underline{25.45}, \underline{26.88}, 33.60, \underline{33.90}, 36.17, \underline{51.31}, 51.63,67.06, \underline{67.23}$, $68.81,111.43, \underline{111.85}, \underline{116.38}, \underline{116.86}, 117.14,117.31,117.40, \underline{117.61}, 120.08, \underline{120.30}, 125.54$, $\underline{125.99}, \underline{128.09}, \underline{128.64}, 129.10,130.16,132.33,133.18, \underline{133.34}, 133.62,133.74, \underline{155.61}, 156.07$, $168.98, \underline{170.23}, 171.19, \underline{172.73}, 197.31 ;$ LCMS (m/z): $397(\mathrm{M}+\mathrm{H})^{+}$.

The underlined chemical shift values with low intensity are attributed to the presence of minor (Z)-isomer ($\approx 15 \%$).
${ }^{\Delta} E: Z(85: 15)$ Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.72$ \& $\underline{6.69}$.
2-[(2E)-3-(2-Allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-3-(pent-4-enyloxy)cyclo-pent-2-enone (5m):

Yield: 64%; reaction time: $(6 \mathrm{~h}+2 \mathrm{~h})$; colorless liquid; IR (neat) : v $1714,1633 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 1.66-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.05-2.15 \& \underline{2.16-2.20}(2 \mathrm{~m}, 2 \mathrm{H}), 2.34-2.42 \& \underline{2.48-2.52}$ $(2 \mathrm{~m}, 2 \mathrm{H}), 2.55-2.62 \& \underline{2.65-2.70}(2 \mathrm{~m}, 2 \mathrm{H}), \underline{3.30} \& 3.33(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.58} \& 3.77(2 \mathrm{~s}, 3 \mathrm{H}), 4.04 \&$ $\underline{4.17}(2 \mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), \underline{4.51} \& 4.57(2 \mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.93-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{dd}, J=10.4$ \& $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=17.2 \& 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.68-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.12(\mathrm{~m}, 1 \mathrm{H}), \underline{6.79} \&$ $7.90(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta}, \underline{6.82} \& 6.86(2 \mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.89-6.94(\mathrm{~m}, 1 \mathrm{H}), \underline{7.14-7.20} \& 7.24-7.32(2 \mathrm{~m}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) : δ 21.67, 24.84, 28.41, 29.56, 33.24, 51.80, 68.46, 69.00, $111.82,115.64,117.27,117.88,120.35,125.11,129.62,129.83,130.16,133.18,135.09,137.18$, 156.53, 168.70, 183.91, 203.88; LCMS (m/z): $397(\mathrm{M}+\mathrm{H})^{+}$.

The underlined chemical shift values with low intensity arise due to the presence of minor (Z) isomer ($\approx 5 \%$).
${ }^{\Delta} E: Z$ (95:5) Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.90 \& \underline{6.79}$. 2-[(2E)-3-(2-Allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-3-(hex-5-enyloxy)cyclo-pent-2-enone (5n):

Yield: 65%; reaction time: $(6 \mathrm{~h}+2 \mathrm{~h})$; colorless liquid; IR (neat) : v 1712, $1689,1633 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 1.38-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.98-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.36-2.43$ $(\mathrm{m}, 2 \mathrm{H}), 2.54-2.63(\mathrm{~m}, 2 \mathrm{H}), 3.33(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 4.03(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.54-4.62(\mathrm{~m}$, $2 \mathrm{H}), 4.90-5.03(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{dd}, J=10.4 \& 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=17.6 \& 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-$ $5.81(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.86(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.92(\mathrm{~m}, 1 \mathrm{H}), 7.21-7.33(\mathrm{~m}, 2 \mathrm{H})$, $7.89(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.67,24.78,24.82,28.82,33.20,33.23,51.78$,
68.99, 69.19, 111.81, 114.91, 117.23, 117.83, 120.33, 125.13, 129.58, 129.80, 130.16, 133.17, 135.04, 138.12, 156.51, 168.69, 183.94, 203.86; LCMS (m/z): $411(\mathrm{M}+\mathrm{H})^{+}$.
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra did not indicate the presence of minor (Z)-isomer.

2-[(2E)-3-(2-Allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-3-(dec-9-enyloxy)cyclo-pent-2-enone (5o):

Yield: 67%; reaction time: $(6 \mathrm{~h}+2 \mathrm{~h})$; colorless liquid; IR (neat) : v $1714,1697,1631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, CDCl_{3}): $\delta 1.20-1.42(\mathrm{~m}, 10 \mathrm{H}), 1.57-1.66 \& \underline{1.68-1.73}(2 \mathrm{~m}, 2 \mathrm{H}), 1.97-2.07(\mathrm{~m}$, $2 \mathrm{H}), 2.37-2.44 \& \underline{2.45-2.50}(2 \mathrm{~m}, 2 \mathrm{H}), 2.56-2.63 \& \underline{2.65-2.70}(2 \mathrm{~m}, 2 \mathrm{H}), \underline{3.29} \& 3.32(2 \mathrm{~s}, 2 \mathrm{H})$, $\underline{3.58} \& 3.77(2 \mathrm{~s}, 3 \mathrm{H}), 4.02 \& \underline{4.15}(2 \mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), \underline{4.47-4.52} \& 4.56-4.62(2 \mathrm{~m}, 2 \mathrm{H}), 4.89-$ $5.03(\mathrm{~m}, 2 \mathrm{H}),[5.22-5.25(\mathrm{~m}) \& 5.27(\mathrm{dd}, J=10.4 \& 1.6 \mathrm{~Hz}),(1 \mathrm{H})],[(5.36-5.38(\mathrm{~m}), 5.40(\mathrm{dd}, J$ $=17.2 \& 1.6 \mathrm{~Hz}), \underline{5.42-5.46}(\mathrm{~m}),(1 \mathrm{H})], 5.72-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.12(\mathrm{~m}, 1 \mathrm{H}), \underline{6.77} \& 7.89(2 \mathrm{~s}$, $1 \mathrm{H})^{\Delta}, \underline{6.82} \& 6.85(2 \mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.92 \& \underline{6.93-7.02}(2 \mathrm{~m}, 1 \mathrm{H}), \underline{7.13-7.20} \& 7.21-7.32$ $(2 \mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.72,24.87,25.61,28.87,29.01,29.19,29.31$, $29.44,33.26,33.75,51.80,69.01,69.44,111.82,114.20,117.26,117.82,120.35,125.18,129.60$, 129.84, 130.21, 133.20, 135.07, 139.11, 156.55, 168.74, 184.08, 203.93; LCMS (m/z): 468 $(\mathrm{M}+\mathrm{H})^{+}$.

The underlined chemical shift values with low intensity arise due to the presence of minor (Z)isomer ($\approx 7 \%$).
${ }^{\Delta} E: Z$ (93:7) Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.89$ \& 6.77.

3-Allyloxy-2-[(2E)-3-(3-allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-5,5-dimethyl-cyclohex-2-enone (5p):

Yield: 63%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; colorless liquid; IR (neat) : v $1712,1649,1614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.97 \& \underline{1.01}(2 \mathrm{~s}, 6 \mathrm{H}), 2.14 \& \underline{2.16}(2 \mathrm{~s}, 2 \mathrm{H}), \underline{2.26} \& 2.28(2 \mathrm{~s}, 2 \mathrm{H})$, $\underline{3.41} \& 3.61(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.62} \& 3.74(2 \mathrm{~s}, 3 \mathrm{H}),[4.40(\mathrm{~d}, J=4.4 \mathrm{~Hz}) \& \underline{4.46-4.51(\mathrm{~m}), 2 \mathrm{H}],[4.52(\mathrm{~d},}$ $J=4.4 \mathrm{~Hz}) \& \underline{4.53-4.58}(\mathrm{~m}), 2 \mathrm{H}], 5.15-5.32(\mathrm{~m}, 3 \mathrm{H}), 5.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.73-5.88(\mathrm{~m}$, $1 \mathrm{H}), 5.98-6.12(\mathrm{~m}, 1 \mathrm{H}), \underline{6} .50 \& 7.52(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta}, 6.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~s}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.39,28.34,31.86,39.26$, $50.20,51.86,68.20,68.79,114.43,115.50,116.35,117.64,122.04,129.08,132.55,132.98$, 133.27, 137.45, 137.49, 158.34, 169.24, 169.61, 197.21; LCMS (m/z): $411(\mathrm{M}+\mathrm{H})^{+}$.

The underlined chemical shift values with low intensity arise due to the presence of minor (Z)isomer ($\approx 5 \%$).
${ }^{\Delta} E: Z$ (95:5) Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.52 \& \underline{6.50}$. 3-Allyloxy-2-[(2E)-3-(3-allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]cyclohex-2enone (5q):

Yield: 69%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; colorless liquid; IR (neat) : v 1712, $1651,1606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.77-1.87(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.41(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $3.59(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.16-5.33(\mathrm{~m}, 3 \mathrm{H})$, $5.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.99-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.89$ $(\mathrm{s}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\delta 20.76,21.61,25.47,36.36,51.86,68.35,68.78,114.44,115.25,117.54,117.68,117.72$, $121.92,129.03,132.69,132.84,133.27,137.39,137.60,158.29,169.25,171.32,197.50 ;$ LCMS $(\mathrm{m} / \mathrm{z}): 383(\mathrm{M}+\mathrm{H})^{+}$.

In addition, peaks at $\delta 3.42(\mathrm{~s}), 3.63(\mathrm{~s}), 4.48(\mathrm{~d})^{*}, 4.57(\mathrm{~d})^{*}$ and $6.50(\mathrm{~s})$ with low intensity also appeared indicating that they arise from minor (Z)-isomer ($\approx 3 \%$).
$E: Z(97: 3)$ Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.52 \& \underline{6.50}$.

* Unresolved doublet.

3-Allyloxy-2-[(2E)-3-(3-allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]cyclopent-2enone (5r):

Yield: 52%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; colorless liquid; IR (neat) : v $1712,1689,1628 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$
 $\underline{3.28} \& 3.40(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.63} \& 3.77(2 \mathrm{~s}, 3 \mathrm{H}), \underline{4.49} \& 4.52(2 \mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59 \& \underline{4.71}(2 \mathrm{~d}, J$ $=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.22-5.35(\mathrm{~m}, 3 \mathrm{H}), 5.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.99-6.12(\mathrm{~m}$, $1 \mathrm{H}), \underline{6.59} \& 7.66(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta}, \underline{6.79} \& 6.85(2 \mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-6.99(\mathrm{~m}, 2 \mathrm{H}), \underline{7.18} \& 7.23$ $(2 \mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) : $\delta 21.15,24.47,33.10,51.70,68.47,69.51$,
$114.71,115.12,117.33,117.56,117.77,121.86,129.05,129.88,131.95,132.95,136.76,138.75$, 158.17, 168.47, 183.72, 203.59; LCMS (m/z) : 369(M+H) ${ }^{+}$.

The underlined chemical shift values with low intensity arise due to the presence of minor (Z)isomer ($\approx 4 \%$).
${ }^{\Delta} E: Z(96: 4)$ Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.66 \& \underline{6.59}$.

3-Allyloxy-2-[(2E)-3-(3-allyloxy-4-methoxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-

 cyclohex-2-enone (5s):

Yield: 63%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; colorless liquid; IR (neat) : v 1703, 1639, $1604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.79-1.91 \& \underline{1.98-2.04}(2 \mathrm{~m}, 2 \mathrm{H}), 2.29 \& \underline{2.37}(2 \mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $2.44 \& \underline{2.61}(2 \mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), \underline{3.41} \& 3.63(2 \mathrm{~s}, 2 \mathrm{H}), \underline{3.66} \& 3.75(2 \mathrm{~s}, 3 \mathrm{H}), \underline{3.84} \& 3.87(2 \mathrm{~s}$, $3 \mathrm{H}), 4.42 \& \underline{4.55}^{*}(2 \mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.58 \& \underline{4.68^{*}}(2 \mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.15-5.33(\mathrm{~m}, 3 \mathrm{H})$, $5.40(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.89(\mathrm{~m}, 1 \mathrm{H}), 6.01-6.15(\mathrm{~m}, 1 \mathrm{H}), \underline{6.47} \& 7.48(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta}, \underline{6.81} \&$ $6.83(2 \mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94(\mathrm{~s}, 1 \mathrm{H}), 6.98(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 20.81, 21.71, 25.61, 36.47, 51.77, 55.97, 68.40, 69.89, 111.14, 114.80, 117.73, 118.08, 123.17, $128.90,130.64,132.86,133.26,137.39,147.45,149.46,169.52,171.42,197.61 ;$ LCMS (m/z) : $413(\mathrm{M}+\mathrm{H})^{+}$.

The underlined chemical shift values with low intensity arise due to the presence of minor (Z) isomer ($\approx 3 \%$).
${ }^{\Delta} E: Z(97: 3)$ Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.48$ \& 6.47.

* Unresolved doublet.

3-Allyloxy-2-[(2E)-3-(3-allyloxy-4-methoxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-cyclopent-2-enone (5t):

Yield: 67%; reaction time: $(6 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 64-66{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): v 1697,1626$, $1593 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 2.41-2.49(\mathrm{~m}, 2 \mathrm{H}), 2.61-2.68(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~s}, 4 \mathrm{H}), 5.21-5.36(\mathrm{~m}, 3 \mathrm{H}), 5.39(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.95$ $(\mathrm{m}, 1 \mathrm{H}), 6.01-6.15(\mathrm{~m}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.94-7.05(\mathrm{~m}, 2 \mathrm{H}), 7.62(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) : $\delta 21.47,24.77,33.38,51.91,55.94,69.77,111.27,114.86,118.00,118.07$, 123.50, 127.80, 128.36, 132.17, 133.17, 139.09, 147.57, 149.78, 169.12, 183.91, 203.96; LCMS $(\mathrm{m} / \mathrm{z}): 399(\mathrm{M}+\mathrm{H})^{+}$.

In addition, peaks at $\delta 2.49-2.52(\mathrm{~m}), 2.69-2.74(\mathrm{~m}), 3.28(\mathrm{~s}), 3.65(\mathrm{~s}), 3.87(\mathrm{~s}), 4.69-4.71(\mathrm{~m})$, $6.55(\mathrm{~s})$ and $6.80(\mathrm{~d}, J=8.4 \mathrm{~Hz})$ with low intensity also appeared indicating that they arise from minor (Z)-isomer ($\approx 3 \%$).
$E: Z(97: 3)$ Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.62 \& \underline{6.55}$. 2-[(2E)-3-(3-Allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-3-(but-3-enyloxy)-5,5-di-methylcyclohex-2-enone (5u):

Yield: 58%; reaction time: $(6 \mathrm{~h}+2 \mathrm{~h})$; colorless liquid; IR (neat) : v 1712, $1645,1614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 0.99(\mathrm{~s}, 6 \mathrm{H}), 2.13(\mathrm{~s}, 2 \mathrm{H}), 2.20-2.32(\mathrm{~m}, 4 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}$, $3 \mathrm{H}), 3.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.50-4.56(\mathrm{~m}, 2 \mathrm{H}), 5.00-5.10(\mathrm{~m}, 2 \mathrm{H}), 5.23-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.45$ $(\mathrm{m}, 1 \mathrm{H}), 5.63-5.76(\mathrm{~m}, 1 \mathrm{H}), 5.99-6.10(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.4 \& 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.96(\mathrm{~m}$, $1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : δ $21.41,28.41,31.78,33.87,39.47,50.16,51.85,67.16,68.79,114.40,115.62,116.02,117.56$, 117.66, 122.13, 129.07, 132.72, 133.27, 133.55, 137.22, 137.46, 158.36, 169.22, 169.64, 197.21; LCMS (m/z): $425(\mathrm{M}+\mathrm{H})^{+}$.
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra did not indicate the presence of any significant amounts of minor (Z) isomer.

2-[(2E)-3-(3-Allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-3-(but-3-enyloxy)cyclohex-
 2-enone (5v):

Yield: 62%; reaction time: $(6 \mathrm{~h}+2 \mathrm{~h})$; colorless liquid; IR (neat) : v $1712,1645,1614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.73-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.26-2.33(\mathrm{~m}, 2 \mathrm{H}), 2.40$ $(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.58(\mathrm{~s}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.52(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H})$, 4.99-5.10 (m, 2H), $5.27(\mathrm{dd}, J=10.4 \& 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=17.2 \& 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.63-5.78$ $(\mathrm{m}, 1 \mathrm{H}), 5.98-6.12(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.0 \& 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 20.71,21.60,25.51$, $33.80,36.32,51.82,67.21,68.77,114.37,115.32,117.18,117.55,117.66,121.94,129.00$,
132.83, 133.27, 133.58, 137.18, 137.59, 158.28, 169.19, 171.32, 197.41; LCMS (m/z): 397 $(\mathrm{M}+\mathrm{H})^{+}$.
${ }^{1} \mathrm{H} \&{ }^{13} \mathrm{C}$ NMR spectra did not indicate the presence of minor (Z)-isomer.

2-[(2E)-3-(3-Allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-3-(pent-4-enyloxy)-cyclohex-2-enone (5w):

Yield: 61%; reaction time: $(6 \mathrm{~h}+2 \mathrm{~h})$; colorless liquid; IR (neat) : $\mathrm{v} 1712,1645,1608 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.60-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.85(\mathrm{~m}, 2 \mathrm{H}), 2.01-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{t}, J$ $=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.51$ $(\mathrm{d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.93-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{dd}, J=10.4 \& 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=17.2 \&$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.81(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.11(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{dd}, J=8.0 \& 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~s}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 20.69$, 21.60, 25.52, 28.41, 29.69, 36.27, 51.80, 67.13, 68.73, 114.38, 115.30, 115.44, 116.87, 117.61, $121.92,128.99,132.86,133.24,137.12,137.34,137.54,158.26,169.14,171.68,197.44 ;$ LCMS $(\mathrm{m} / \mathrm{z}): 411(\mathrm{M}+\mathrm{H})^{+}$.

In addition, peaks at $\delta 2.59(\mathrm{t}), 3.38(\mathrm{~s}), 3.64(\mathrm{~s}), 4.03(\mathrm{t})$ and $6.47(\mathrm{~s})$ with low intensity also appeared indicating that they are due to the presence of minor (Z)-isomer $(\approx 3 \%)$. $E: Z(97: 3)$ Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.51 \& \underline{6.47}$.

2-[(2E)-3-(3-Allyloxyphenyl)-2-methoxycarbonyl-prop-2-ene-1-yl]-3-(pent-4-enyloxy)-cyclopent-2-enone (5x):

Yield: 69%; reaction time: $(6 \mathrm{~h}+2 \mathrm{~h})$; colorless liquid; IR (neat) : v $1714,1689,1624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.66-1.79 \& \underline{1.80-1.89}(2 \mathrm{~m}, 2 \mathrm{H}), 2.07-2.15 \& \underline{2.16-2.22}(2 \mathrm{~m}, 2 \mathrm{H})$, 2.37-2.45 \& $\underline{2.46-2.50}(2 \mathrm{~m}, 2 \mathrm{H}), 2.56-2.64 \& \underline{2.66-2.71}(2 \mathrm{~m}, 2 \mathrm{H}), \underline{3.25} \& 3.39(2 \mathrm{bs}, 2 \mathrm{H}), \underline{3.64} \&$ $3.78(2 \mathrm{~s}, 3 \mathrm{H}), 4.05 \& \underline{4.18}(2 \mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.93-5.04(\mathrm{~m}, 2 \mathrm{H}), 5.27$ $(\mathrm{dd}, J=10.4 \& 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=17.2 \& 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.67-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.97-6.11(\mathrm{~m}$, $1 \mathrm{H}), \underline{6.55} \& 7.66(2 \mathrm{~s}, 1 \mathrm{H})^{\Delta}, 6.77-6.99(\mathrm{~m}, 3 \mathrm{H}), \underline{7.15-7.19} \& 7.20-7.29(2 \mathrm{~m}, 1 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 21.46,24.91,28.46,29.59,33.28,51.98,68.58,68.81,115.02,115.51,115.74$, $117.54,117.68,122.18,129.32,130.22,133.22,137.05,137.13,139.04,158.47,168.76,184.20$, 203.89; LCMS (m/z) : $397(\mathrm{M}+\mathrm{H})^{+}$.

The underlined chemical shift values with low intensity are attributed to the presence of minor (Z)-isomer ($\approx 4 \%$).
${ }^{\Delta} E: Z(96: 4)$ Ratio is determined by the integration of isomeric olefinic protons at $\delta 7.66 \& \underline{6.55}$.

General procedure: Synthesis of ($4 E, 15 E$)-10,10-dimethyl-2,7-dioxa-15-methoxycarbonyltricyclo[15.4.0.0 ${ }^{8,13}$]henicosane-1(17),4,8(13),15,18,20-hexaen-12-one (6a): To a stirred solution of 3-allyloxy-2-[(2E)-3-(2-allyloxyphenyl)-2-methoxycarbonylprop-2-en-1-yl]-5,5-dimethylcyclohex-2-enone ($5 \mathrm{a}, 0.205 \mathrm{~g}, 0.5 \mathrm{mmol}$) in dichloromethane (50 mL) at reflux temperature was added $1 \mathrm{M} \mathrm{Ti}\left(\mathrm{O}^{\mathrm{i}}{ }^{\mathrm{i}} \mathrm{Pr}\right)_{4}(0.1 \mathrm{~mL}, 20 \mathrm{~mol} \%)$ in dichloromethane. After stirring for 1 h Grubbs' $1^{\text {st }}$ generation catalyst ($12.3 \mathrm{mg}, 3 \mathrm{~mol} \%$) in dichloromethane (10 mL) was added drop wise and stirring continued for another 4 h at reflux temperature. Reaction mixture was allowed to cool to room temperature and quenched with saturated NaHCO_{3} solution. Organic layer was separated and the aqueous layer was washed with dichloromethane (3 x 25 mL). Combined Organic layer was dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. Solvent was evaporated and the crude product was purified by silica gel column chromatography (40% ethyl acetate / hexanes) followed by re-crystallization (35% ethyl acetate in hexanes) to provide the title compound (6a) as a colorless solid in $70 \%(0.133 \mathrm{~g})$ yield.

Mp: 146-148 ${ }^{0} \mathrm{C}$; IR (KBr) : v 1714, 1645, $1606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.96(\mathrm{~s}$, $6 \mathrm{H}), 2.19(\mathrm{~s}, 2 \mathrm{H}), 2.24(\mathrm{~s}, 2 \mathrm{H}), 3.64(\mathrm{~s}, 2 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~s}, 2 \mathrm{H}), 4.32-4.92(\mathrm{~b}, 2 \mathrm{H}), 5.50-$ $5.64(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.12(\mathrm{~m}, 1 \mathrm{H}), 7.04-7.15(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.32(\mathrm{~m}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.78(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 20.45,28.44,32.01,39.38,50.38,51.82,66.28$, $75.24,117.30,122.36,123.71,128.59,130.00,130.28,131.26,131.83,132.94,134.78,156.57$, 169.22, 169.48, 197.09; LCMS (m/z) : $383(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 72.23; H, 6.85; Found: C, 72.36; H, 6.79.

To understand more about broad peak at $\delta 4.32-4.92$, we recorded ${ }^{1} \mathrm{H}$ NMR spectra at $-40^{0} \mathrm{C}$
${ }^{\mathbf{1}} \mathbf{H}$ NMR at $-\mathbf{4 0}{ }^{\mathbf{0}} \mathbf{C}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 0.95(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.46(\mathrm{~m}, 4 \mathrm{H}), 3.53 \&$ $3.72(\mathrm{ABq}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.09-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.23-4.34(\mathrm{~m}, 2 \mathrm{H}), 4.98(\mathrm{dd}, J=$
$11.6 \& 4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.14(\mathrm{~m}, 1 \mathrm{H}), 7.08-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.43(\mathrm{~m}$, 2H), 7.84 (s, 1H).
*One peak of the AB quartet merges with singlet at $\delta 3.74$.
The following differences were observed between ${ }^{1} H$ NMR spectra at room temperature and at $-40^{0} \mathrm{C}$.

1. Singlet at $\delta 0.96(6 H)$ at room temperature appeared as two singlets, one at $\delta 0.95(3 H)$ and the second one at $\delta 1.06(3 H)$ at $-40{ }^{\circ} \mathrm{C}$.
2. Singlets at $\delta 2.19(2 H) \& 2.24(2 H)$ at room temperature appeared as a multiplet at $\delta 2.18$ $2.46(4 H)$ at $-40^{\circ} \mathrm{C}$.
3. Singlet at $\delta 3.64(2 H)$ at room temperature appeared as a $A B$ quartet at $\delta 3.53 \& 3.72(2 \mathrm{H})$ at $-40^{\circ} \mathrm{C}$.
4. Singlet at $\delta 4.18(2 H)$ and broad peak at δ 4.32-4.92 (2H) at room temperature appeared as (two) multiplets at δ 4.09-4.17 (1H) \& 4.23-4.34 (2H) and a doublet of doublet (dd) at $\delta 4.98$ (1H) at $-40^{\circ} \mathrm{C}$.

These differences may be attributed to the conformational changes at low temperature (rigid conformation) and room temperature (flexible conformation).

Crystal data for 6a: Empirical formula, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$; Formula weight, 382.44; crystal color, colorless; habit, block; crystal dimensions, $0.20 \times 0.18 \times 0.10 \mathrm{~mm}^{3}$; crystal system, monoclinic; lattice type, primitive; lattice parameters, $\mathrm{a}=12.6354(9) \AA, \mathrm{b}=10.1017(7) \AA, \mathrm{c}=15.6517(11)$ $\AA, \alpha=90.00, \beta=95.2200(10), \gamma=90.00 ; \mathrm{V}=1989.5(2) \AA^{3}$; space group, $\mathrm{p} 2(1) / \mathrm{c} ; \mathrm{Z}=4 ; \mathrm{D}_{\text {cald }}=$ $1.277 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=816 ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=0.0975, \mathrm{wR}^{2}=0.1945$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound 6a CCDC \# 914817).

ORTEP diagram of compound 6a
We have obtained single crystals of the compounds $6 \mathrm{a}, 6 \mathrm{c}-\mathrm{E}, 6 \mathrm{c}-\mathrm{Z}, 6 \mathrm{k}, 6 \mathrm{~m}, 6 \mathrm{n}, 6 \mathrm{o}, 7 \mathrm{a}-\mathrm{E}$, $7 a-Z$, and 7 g from $35-40 \%$ ethyl acetates in hexanes).
(4E,15E)-2,7-Dioxa-15-methoxycarbonyltricyclo[15.4.0.0 ${ }^{8,13}$]henicosane-1(17),4,8(13),15,18-20-hexaen-12-one (6b):

Yield: 63%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $156-158{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): v 1714,1645$, $1604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 1.80(\mathrm{~b}, 2 \mathrm{H}), 2.25-2.45(\mathrm{~m}, 4 \mathrm{H}), 3.63(\mathrm{~s}, 2 \mathrm{H}), 3.73$ (s, 3H), $4.21(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.35-4.88(\mathrm{~m}, 2 \mathrm{H}), 5.52-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.96-6.08(\mathrm{~m}, 1 \mathrm{H}), 7.01-$ $7.14(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.77(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 20.63,25.34$, $36.49,51.74,66.28,75.01,118.52,122.14,123.50,128.73,129.95,130.41,131.23,131.97$, $132.98,134.75,156.46,169.23,171.17,197.49 ;$ LCMS (m/z) : $355(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5}$: C, 71.17; H, 6.26; Found: C, 71.25; H, 6.21.

To understand more about broad peak at $\delta 4.35-4.88$, we recorded ${ }^{1} \mathrm{H}$ NMR spectra at $-40{ }^{0} \mathrm{C}$.
${ }^{\mathbf{1}} \mathbf{H}$ NMR at $\mathbf{- 4 0}{ }^{\mathbf{0}} \mathbf{C}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 1.80-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.65(\mathrm{~m}, 4 \mathrm{H}), 3.51 \& 3.73$ (ABq, $J=15.2 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.15-4.40(\mathrm{~m}, 3 \mathrm{H}), 4.95-5.07(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.67(\mathrm{~m}, 1 \mathrm{H})$, 5.98-6.14 (m, 1H), 7.08-7.23 (m, 2H), 7.28-7.44 (m, 2H), $7.83(\mathrm{~s}, 1 \mathrm{H})$.
*One peak of the AB quartet merges with singlet at $\delta 3.74$.
The following differences were observed between ${ }^{1} H N M R$ spectra at room temperature and at $-40^{\circ} \mathrm{C}$.

1. Singlet at $\delta 3.63(2 H)$ at room temperature appeared as a $A B$ quartet at $\delta 3.51 \& 3.73(2 H)$ at $-40^{0} C$.
2. Doublet at $\delta 4.21(2 H)$ and multiplet at $\delta 4.35-4.88(2 H)$ at room temperature appeared as (two) multiplets at $\delta 4.15-4.40(3 \mathrm{H}) \& 4.95-5.07$ (1H) at $-40{ }^{\circ} \mathrm{C}$.

These differences may be attributed to the conformational changes at low temperature (rigidconformation) and room temperature (flexible conformation).
(E) and (Z)-Isomers of the compounds $\mathbf{6 c}, \mathbf{6 j}$, 7a-e were separated by silica gel column chromatography [solvent system: 50% ethyl acetate in hexanes (for compounds $\mathbf{6 c}, \mathbf{6 j}, 7 \mathbf{c}, 7 \boldsymbol{e}$) and 40% ethyl acetate in hexanes ((for compounds $7 \mathbf{a}, 7 \mathbf{b}, 7 \mathbf{d})$. In all these cases (E)-isomers eluted first (less polar) while (Z)-isomers eluted later (more polar).[(E) and (Z)stereochemistry refers to the newly formed double bond after RCM reaction]. (4E,14E)-2,7-Dioxa-15-methoxycarbonyltricyclo[15.3.0.0 ${ }^{8,13}$]icosane-1(17),4,8(13),9,11,14-hexaen-18-one ($6 \mathrm{c}-E$):

Yield: 53%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $142-144{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): v 1699,1633$, $1604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 2.21(\mathrm{bs}, 4 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.39(\mathrm{~d}, J=$
$6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{~b}, 2 \mathrm{H}), 5.60-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.97-6.10(\mathrm{~m}, 1 \mathrm{H}), 6.96-7.06(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.33$ (m, 2H), $7.93(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) : $\delta 19.58,24.71,33.61,52.34,66.52,74.43$, $120.32,121.33,123.42,129.23,129.47,129.95,130.13,130.32,134.20,135.38,156.06,169.20$, 183.35, 204.30; LCMS (m/z) : $341(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}: \mathrm{C}, 70.57$; $\mathrm{H}, 5.92$; Found: C, 70.45; H, 5.87.

Crystal data for $\mathbf{6 c - E}$: Empirical formula, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$; Formula weight, 340.36; crystal color, colorless; habit, block; crystal dimensions, $0.28 \times 0.20 \times 0.14 \mathrm{~mm}^{3}$; crystal system, monoclinic; lattice type, primitive; lattice parameters, $\mathrm{a}=9.5864(7) \AA, \mathrm{b}=12.2835(9) \AA, \mathrm{c}=14.5863(10) \AA$, $\alpha=90.00, \beta=97.9790(10), \gamma=90.00 ; V=1701.0(2) \AA^{3}$; space group, $\mathrm{p} 2(1) / \mathrm{n} ; \mathrm{Z}=4 ; \mathrm{D}_{\text {cald }}=$ $1.329 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=720 ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=0.0567, \mathrm{wR}^{2}=0.1340$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound 6c-E CCDC \# 914818).

ORTEP diagram of compound 6c-E
(4Z,14E)-2,7-Dioxa-15-methoxycarbonyltricyclo[15.3.0.0 ${ }^{8,13}$ icosane-1(17),4,8(13),9,11,14-hexaen-18-one (6c-Z):

Yield: 35%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $144-146{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}):$: 1695,1631 , $1604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 2.32-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.45(\mathrm{~m}, 2 \mathrm{H}), 3.37(\mathrm{~d}, J=$ $0.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.61(\mathrm{dd}, J=5.6 \& 0.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.82(\mathrm{dd}, J=5.6 \& 0.8 \mathrm{~Hz}, 2 \mathrm{H})$,
5.64-5.75 (m, 1H), 5.91-6.00 (m, 1H), $6.91(\mathrm{dd}, J=8.4 \& 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.99-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.11$ $(\mathrm{dd}, J=7.6 \& 0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $20.18,25.45,33.20,51.97,65.70,66.41,117.34,117.66,122.37,126.59,127.72,129.25,130.46$, 131.48, 131.76, 137.29, 155.17, 167.97, 183.34, 203.81; LCMS (m/z) : $341(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$: C, 70.57; H, 5.92; Found: C, 70.45; H, 5.98 .

Following differences were observed between ${ }^{1} H$ and ${ }^{13} C$ NMR spectra of $(E)-\&(Z)$ - isomers (this stereochemistry refers to the newly formed double bond after RCM reaction).

In ${ }^{1} H$ NMR spectra:

1. Broad singlet at $\delta 2.21(4 H)$ of (E)-isomer appeared as two multiplets at $\delta 2.32-2.37(2 \mathrm{H}) \&$ 2.39-2.45 (2H) in (Z) -isomer.
2. Doublet at $\delta 4.39(2 H)$ and broad singlet at $\delta 4.59(2 H)$ of (E)-isomer appeared as doublet of doublets (dd) at $\delta 4.61$ (2H) \& $4.82(2 H)$ in (Z)-isomer.
3. Multiplets at δ 6.96-7.06 (2H) \& 7.20-7.33 (2H) of (E)-isomer appeared as (two) doublet of doublets (dd) at $\delta 6.91(1 \mathrm{H}) \& 7.11(1 \mathrm{H})$ and (two) multiplets at $\delta 6.99-7.05(1 \mathrm{H}), \quad 7.21-7.25$ (1H) in (Z)-isomer.

In ${ }^{13} C$ NMR spectra:
4. Allyloxy carbons $\left(C_{3} \& C_{6}\right)$ of (E)-isomer appeared at $\delta 66.52 \& 74.43$ while the same carbons in (Z)-isomer appeared at $\delta 65.70$ \& 66.41 .

Crystal data for 6c-Z: Empirical formula, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}$; Formula weight, 340.36; crystal color, colorless; habit, plate; crystal dimensions, $0.20 \times 0.18 \times 0.10 \mathrm{~mm}^{3}$; crystal system, monoclinic; lattice type, primitive; lattice parameters, $a=20.440(6) \AA, b=10.579(3) \AA, c=7.873(2) \AA, \alpha=$ $90.00, \beta=92.119(5), \gamma=90.00 ; \mathrm{V}=1701.1(8) \AA^{3}$; space group, $\mathrm{p} 2(1) / \mathrm{c} ; \mathrm{Z}=4 ; \mathrm{D}_{\text {cald }}=1.329 \mathrm{~g} /$ $\mathrm{cm}^{3} ; \mathrm{F}_{000}=720 ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=0.0503, \mathrm{wR}^{2}=0.1175$. Detailed X-ray
crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound 6c-Z CCDC \# 914819).

ORTEP diagram of compound $\mathbf{6 c - Z}$
(4E,15E)-19-Bromo-10,10-dimethyl-2,7-dioxa-15- methoxycarbonyltricyclo-[15.4.0.0 ${ }^{8,13}$] henicosane-1(17),4,8(13),15,18,20-hexaen-12-one (6d):

Yield: 61%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $136-138{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): v 1714,1657$, $1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.98(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~b}, 2 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~b}, 2 \mathrm{H}), 4.29-4.92(\mathrm{~m}, 2 \mathrm{H}), 5.52-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.96-6.08(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=8.4 \& 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) : $\delta 20.44,28.40,31.99,39.30,50.28,51.90,66.11,75.42,116.55,116.79$, 124.13, 128.97, 132.64, 132.74, 133.10, 133.18, 155.58, 168.84, 169.52, 196.78; LCMS (m/z) : $461(\mathrm{M}+\mathrm{H})^{+}, 463\left[(\mathrm{M}+\mathrm{H})^{+}+2\right]$; Analysis calc'd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{BrO}_{5}$: C, 59.88; H, 5.46; Found: C, 59.95; H, 5.40.

In addition, two singlets, one at $\delta 0.99$ and the other one at $\delta 3.71$ with low intensity also appeared. These may be attributed to the presence of minor (Z)-isomer $(\approx 2 \%)$ at C 4 -C5 double bond.

To understand more about broad peak at $\delta 4.29-4.92$, we recorded ${ }^{1} \mathrm{H}$ NMR spectra at $-40{ }^{0} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR at $-\mathbf{4 0}{ }^{\mathbf{0}} \mathbf{C}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 2.20-2.48(\mathrm{~m}, 4 \mathrm{H}), 3.48 \&$ $3.72(\mathrm{ABq}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.09-4.34(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{dd}, J=11.6 \& 4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.50-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.97-6.10(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H})$.
*One peak of the AB quartet merges with singlet at $\delta 3.74$.
The following differences were observed between ${ }^{1} H N M R$ spectra at room temperature and at $-40{ }^{\circ} \mathrm{C}$.

1. Singlet at $\delta 0.98(6 H)$ at room temperature appeared as two singlets, one at $\delta 0.98$ (3H) and the second one at $\delta 1.07(3 \mathrm{H})$ at $-40{ }^{\circ} \mathrm{C}$.
2. Singlets at $\delta 2.22(2 H) \& 2.25(2 H)$ at room temperature appeared as a multiplet at $\delta 2.20$ $2.48(4 H)$ at $-40^{\circ} \mathrm{C}$.
3. Broad singlet at $\delta 3.62(2 H)$ at room temperature appeared as a AB quartet at $\delta 3.48 \& 3.72$ (2H) at $-40{ }^{\circ} \mathrm{C}$.
4. Broad singlet at $\delta 4.18(2 \mathrm{H})$ and multiplet at $\delta 4.29-4.92(2 \mathrm{H})$ at room temperature appeared as a multiplet at $\delta 4.09-4.34(3 \mathrm{H})$ and a doublet of doublet at $\delta 4.98(1 \mathrm{H})$ at $-40{ }^{\circ} \mathrm{C}$.
5. Doublet of doublet at $\delta 7.39(1 \mathrm{H})$ and doublet at $\delta 7.45(1 \mathrm{H})$ at room temperature appeared as a multiplet at $\delta 7.40-7.52(2 \mathrm{H})$ at $-40{ }^{\circ} \mathrm{C}$.

These differences may be attributed to the conformational changes at low temperature (rigid conformation) and room temperature (flexible conformation).
(4E,15E)-19-Bromo-2,7-dioxa-15-methoxycarbonyltricyclo[15.4.0.0 ${ }^{8,13}$]henicosane-1(17),4-8(13),15,18,20-hexaen-12-one (6e):

Yield: 58%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $168-170{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}):$: 1707,1643 , $1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.83(\mathrm{~b}, 2 \mathrm{H}), 2.28-2.50(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~b}, 2 \mathrm{H}), 3.73$ $(\mathrm{s}, 3 \mathrm{H}), 4.22(\mathrm{~b}, 2 \mathrm{H}), 4.33-5.06(\mathrm{~m}, 2 \mathrm{H}), 5.54-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.94-6.09(\mathrm{~m}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 1 \mathrm{H}$), 7.36-7.45 (m, 2H), $7.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 20.59,20.64,25.26$, $36.39,51.84,66.06,75.17,116.29,117.95,123.89,129.14,132.69,132.85,133.06,133.13$, $133.19,155.43,168.85,171.16,197.18 ;$ LCMS $(\mathrm{m} / \mathrm{z}): 433(\mathrm{M}+\mathrm{H})^{+}, 435\left[(\mathrm{M}+\mathrm{H})^{+}+2\right]$; Analysis calc'd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{BrO}_{5}$: C, 58.21; H, 4.89; Found: C, 58.31; H, 4.82.

In addition, peaks at $\delta 3.51(\mathrm{~s}), 5.66-5.75(\mathrm{~m}), 6.80(\mathrm{~d}), 7.19-7.21(\mathrm{~m})$, and $7.31(\mathrm{~d})$ with low intensity [probably due to presence of the minor (Z)-isomer ($\approx 3 \%$) (C4-C5 double bond)] also appeared.

To understand more about broad peak at $\delta 4.33-5.06$, we recorded ${ }^{1} \mathrm{H}$ NMR spectrum at $-40{ }^{0} \mathrm{C}$. ${ }^{1} \mathbf{H}$ NMR at $\mathbf{- 4 0}{ }^{\mathbf{0}} \mathbf{C}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 1.82-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.64(\mathrm{~m}, 4 \mathrm{H}), 3.48 \& 3.73$ $(\mathrm{ABq}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.18-4.36(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{dd}, J=11.6 \& 3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.53-5.65 (m, 1H), 5.96-6.09 (m, 1H), 7.03 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.71(\mathrm{~s}, 1 \mathrm{H})$.
*One peak of the AB quartet merges with singlet at $\delta 3.75$.
In addition, peaks at $\delta 5.70-5.80(\mathrm{~m}), 6.85(\mathrm{~d}), 7.18-7.21(\mathrm{~m}), 7.36(\mathrm{~d})$ and $7.72(\mathrm{~s})$ with low intensity also appeared. These may arise due to the presence of the minor (Z)-isomer ($\approx 3 \%$) (C4C5 double bond).

The following differences were observed between ${ }^{1} H N M R$ spectra at room temperature and at $-40^{0} C$.

1. Broad singlet at $\delta 3.62(2 H)$ at room temperature appeared as a $A B$ quartet at $\delta 3.48 \& 3.73$ (2H) at $-40^{\circ} \mathrm{C}$.
2. Broad singlet at $\delta 4.22(2 \mathrm{H})$ and multiplet at $\delta 4.33-5.06(2 \mathrm{H})$ at room temperature appeared as a multiplet at $\delta 4.18-4.36(3 \mathrm{H})$ and a doublet of doublet at $\delta 4.98(1 \mathrm{H})$ at $-40{ }^{\circ} \mathrm{C}$.

These differences may be attributed to the conformational changes at low temperature (rigidconformation) and room temperature (flexible conformation).
(4E,15E)-19-Chloro-10,10-dimethyl-2,7-dioxa-15-methoxycarbonyltricyclo[15.4.0.0 ${ }^{8,13}$]-henicosane-1(17),4,8(13),15,18,20-hexaen-12-one (6f):

Yield: 68%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $114-116{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}):$ v 1705,1649 , $1614 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.98(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 2 \mathrm{H}), 2.25(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~b}, 2 \mathrm{H})$, $3.72(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{~b}, 2 \mathrm{H}), 4.30-4.86(\mathrm{~m}, 2 \mathrm{H}), 5.50-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.94-6.08(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 20.47,28.41,32.02,39.31,50.28,51.93,66.13,75.50,116.79,123.74,128.95$, $129.80,129.90,132.71,133.07,133.27,155.06,168.89,169.55,196.85 ;$ LCMS (m/z) : 417 $(\mathrm{M}+\mathrm{H})^{+}, 419\left[(\mathrm{M}+\mathrm{H})^{+}+2\right]$; Analysis calc'd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{ClO}_{5}$: C, 66.26; H, 6.04; Found: C, 66.38; H, 6.10.

In addition, singlets at $\delta 1.02,3.50,3.70$, multiplets at $\delta 5.61-5.72,5.92-5.98,7.08-7.11,7.18-$ 7.21 and a doublet at $\delta 6.87$ with low intensity also appeared. These may be due to presence of the minor (Z)-isomer ($\approx 2 \%$) ($\mathrm{C} 4-\mathrm{C} 5$ double bond).

To understand more about broad peak at $\delta 4.30-4.86$, we recorded ${ }^{1} \mathrm{H}$ NMR spectra at $-40{ }^{0} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR at $-\mathbf{4 0}{ }^{\mathbf{0}} \mathbf{C}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 0.98(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.48(\mathrm{~m}, 4 \mathrm{H}), 3.49 \&$
$3.72(\mathrm{ABq}, J=15.2 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.34(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{dd}, J=11.6 \& 4.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.51-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.98-6.11(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.73(\mathrm{~s}, 1 \mathrm{H})$.

* One peak of AB quartet merges with singlet at $\delta 3.74$.

In addition, singlets at $\delta 1.04,7.74$, multiplets at $\delta 5.70-5.80,7.20-7.25$ and a doublet at $\delta 6.92$ with low intensity also appeared (probably due to the presence of the minor (Z)-isomer $(\approx 2 \%)$ at C4-C5 double bond).

The following differences were observed between ${ }^{1} H$ NMR spectra at room temperature and at $-40^{\circ} \mathrm{C}$.

1. Singlet at $\delta 0.98(6 H)$ at room temperature appeared as (two) singlets at $\delta 0.98$ (3H) \& 1.07 (3H) at $-40^{\circ} \mathrm{C}$.
2. Singlets at $\delta 2.22(2 H) \& 2.25(2 H)$ at room temperature appeared as a multiplet at $\delta 2.18$ $2.48(4 H)$ at $-40^{\circ} \mathrm{C}$.
3. Broad singlet at $\delta 3.62(2 H)$ at room temperature appeared as a AB quartet at $\delta 3.49 \& 3.72$ (2H) at $-40^{\circ} \mathrm{C}$.
4. Broad singlet at $\delta 4.18(2 \mathrm{H})$ and multiplet at $\delta 4.30-4.86(2 \mathrm{H})$ at room temperature appeared as a multiplet $\delta 4.10-4.34(3 H)$ and a doublet of doublet at $\delta 4.98(1 \mathrm{H})$ at $-40{ }^{\circ} \mathrm{C}$.
5. Multiplet at δ 7.21-7.29(1H) and doublet at $\delta 7.31(1 \mathrm{H})$ at room temperature appeared as a multiplet at δ 7.26-7.38 (2H) at $-40{ }^{\circ} \mathrm{C}$.

These differences may be attributed to the conformational changes at low temperature (rigid conformation) and room temperature (flexible conformation).

(4E,15E)-19-Chloro-2,7-dioxa-15-methoxycarbonyltricyclo[15.4.0.0 ${ }^{8,13}$ henicosane-1(17),4,-

 8(13),15,18,20-hexaen-12-one (6g):

Yield: 61%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 158-160{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}):$: 1707,1645 , $1608 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.83(\mathrm{~b}, 2 \mathrm{H}), 2.30-2.52(\mathrm{~m}, 4 \mathrm{H}), 3.62(\mathrm{~b}, 2 \mathrm{H}), 3.73$ $(\mathrm{s}, 3 \mathrm{H}), 4.22(\mathrm{~b}, 2 \mathrm{H}), 4.32-4.90(\mathrm{~m}, 2 \mathrm{H}), 5.52-5.65(\mathrm{~m}, 1 \mathrm{H}), 5.95-6.08(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.21-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 20.63,20.67,25.29$, $36.39,51.86,66.10,75.26,118.00,123.50,128.67,129.11,129.73,130.02,132.68,132.76$, 133.21, 154.94, 168.90, 171.18, 197.22; LCMS (m/z) : $389(\mathrm{M}+\mathrm{H})^{+}, 391\left[(\mathrm{M}+\mathrm{H})^{+}+2\right] ;$ Analysis calc'd. for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClO}_{5}$: C, 64.87; H, 5.44; Found: C, 64.75; H, 5.49.

In addition, doublets at $\delta 6.88 \& 7.08$ and a multiplet at $\delta 7.15-7.20$ with low intensity also appeared. These may be attributed to the minor (Z)-isomer ($\approx 2 \%$) (C4-C5 double bond).

To understand more about broad peak at $\delta 4.32-4.90$, we recorded ${ }^{1} \mathrm{H}$ NMR spectra at $-40{ }^{0} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR at $\mathbf{- 4 0}{ }^{\mathbf{0}} \mathbf{C}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathrm{CDCl}_{3}\right): \delta 1.82-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.65(\mathrm{~m}, 4 \mathrm{H}), 3.48 \& 3.73$
$(\mathrm{ABq}, J=14.8 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.17-4.35(\mathrm{~m}, 3 \mathrm{H}), 4.98(\mathrm{dd}, J=11.6 \& 4.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.56-5.65 (m, 1H), 5.96-6.09 (m, 1H), 7.08 (d, J=8.4 Hz, 1H), 7.23-7.35 (m, 2H), 7.72 (s, 1H).

* One peak of the AB quartet merges with singlet at $\delta 3.75$.

The following differences were observed between ${ }^{1} H N M R$ spectra at room temperature and at $-40^{\circ} \mathrm{C}$.

1. Broad singlet at $\delta 3.62(2 H)$ at room temperature appeared as a AB quartet at $\delta 3.48$ \& 3.73 (2H) at $-40^{\circ} \mathrm{C}$.
2. Broad singlet at $\delta 4.22(2 \mathrm{H})$ and multiplet at δ 4.32-4.90 (2H) at room temperature appeared as a multiplet at δ 4.17-4.35 (3H) and a doublet of doublet at $\delta 4.98(1 \mathrm{H})$ at $-40{ }^{\circ} \mathrm{C}$.

These differences may be attributed to the conformational changes at low temperature (rigidconformation) and room temperature (flexible conformation).
(4E,15E)-10,10-Dimethyl-2,7-dioxa-21-methoxy-15-methoxycarbonyltricyclo[15.4.0.0 ${ }^{8,13}$]-henicosane-1(17),4,8(13),15,18,20-hexaen-12-one (6h):

Yield: 56%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 134-136{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v 1703,1645$, $1626 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 0.91(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.38(\mathrm{~m}, 4 \mathrm{H}), 3.57 \&$ $3.70(\mathrm{ABq}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.03-4.13(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.31(\mathrm{~m}, 1 \mathrm{H})$, 4.33-4.42 (m, 1H), $4.77(\mathrm{dd}, J=12.0 \& 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47-5.58(\mathrm{~m}, 1 \mathrm{H}), 6.05-6.18(\mathrm{~m}, 1 \mathrm{H})$,
$6.88(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.96(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) : $\delta 20.63,28.36,28.50,32.00,39.33,50.37,51.82,55.85,66.28,72.60$, $112.39,117.29,122.16,124.02,128.50,132.01,132.45,133.89,134.80,144.33,153.08,169.29$, 169.54, 197.12; LCMS (m/z) : $413(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{6}: \mathrm{C}, 69.88 ; \mathrm{H}, 6.84$; Found: C, 69.76; H, 6.90.

* One peak of the AB quartet merges with singlet at $\delta 3.72$.
(4E,15E)-2,7-Dioxa-21-methoxy-15-methoxycarbonyltricyclo[15.4.0.0 ${ }^{8,13}$]henicosane-1(17)-4,8(13),15,18,20-hexaen-12-one (6i):

Yield: 59%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 150-152{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v 1712,1645$, $1612 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.73-1.96(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.54(\mathrm{~m}, 4 \mathrm{H}), 3.55 \& 3.71$ $(\mathrm{ABq}, J=15.6 \mathrm{~Hz}, 2 \mathrm{H})^{*}, 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.09-4.17(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.32(\mathrm{~m}, 1 \mathrm{H}), 4.36-$ $4.44(\mathrm{~m}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=12.0 \& 4.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.48-5.61(\mathrm{~m}, 1 \mathrm{H}), 6.05-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J$ $=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right): \delta 20.67,20.80,25.31,36.46,51.67,55.82,66.21,72.48,112.33,118.40,122.23$, $123.80,128.57,132.12,132.43,133.96,134.72,144.20,153.01,169.26,171.18,197.44 ;$ LCMS $(\mathrm{m} / \mathrm{z}): 385(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}$: C, 68.74; H, 6.29; Found: C, 68.83; H, 6.22.
*One peak of the AB quartet merges with singlet at $\delta 3.72$.
(4E,14E)-2,7-Dioxa-9-methoxy-15-methoxycarbonyltricyclo[15.3.0.0 ${ }^{8,13}$]icosane-1(17),4-8(13),9,11,14-hexaen-18-one ($6 \mathrm{j}-E$):

Yield: 48%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $110-112{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}):$ v 1707,1685 , $1631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 2.07-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.32-2.44(\mathrm{~m}, 2 \mathrm{H}), 3.51 \& 3.61$ (ABq $J=17.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.84 \& 3.85(2 \mathrm{~s}, 6 \mathrm{H}), 4.31-4.50(\mathrm{~m}, 3 \mathrm{H}), 4.77(\mathrm{dd}, J=12.0 \& 4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.56-5.66(\mathrm{~m}, 1 \mathrm{H}), 6.06-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.83(\mathrm{dd}, J=8.0 \& 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{dd}, J=8.0 \&$
$1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-7.02(\mathrm{~m}, 1 \mathrm{H}), 7.91(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ 19.75, 24.68, $33.60,52.32,55.79,66.21,72.33,112.55,120.37,121.60,123.80,129.10,129.32,131.61$, $135.28,135.49,144.05,152.66,169.25,183.27,204.33 ; \operatorname{LCMS}(\mathrm{m} / \mathrm{z}): 371(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}$: C, 68.10; H, 5.99; Found: C, 68.21; H, 6.05.
(4Z,14E)-2,7-Dioxa-9-methoxy-15-methoxycarbonyltricyclo[15.3.0.0 ${ }^{8,13}$]icosane-1(17),4-8(13),9,11,14-hexaen-18-one (6j-Z):

Yield: 30%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 150-152{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v 1705,1693$, $1631 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 2.32-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.49(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.48(\mathrm{bs}, 2 \mathrm{H}), 4.81(\mathrm{~b}, 2 \mathrm{H}), 5.63-5.72(\mathrm{~m}, 1 \mathrm{H}), 6.08-6.18(\mathrm{~m}, 1 \mathrm{H}), 6.78$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}){ }^{*}, 6.86(\mathrm{dd}, J=8.4 \& 1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.98-7.06(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) : $\delta 19.95,24.55,33.45,51.98,55.90,64.42,69.84,112.04,118.44,122.28$, $123.82,125.11,130.53,130.65,133.89,136.19,145.12,153.00,168.21,183.48,203.10 ;$ LCMS $(\mathrm{m} / \mathrm{z}): 371(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}$: C, $68.10 ; \mathrm{H}, 5.99$; Found: C, 68.17; H, 5.94. * Unresolved doublet of doublet (dd).

Following differences were observed between ${ }^{1} H \&{ }^{13} C$ NMR spectra of $(E) \&(Z)$ isomers (this stereochemistry refers to the newly formed double bond after RCM reaction).

In ${ }^{1} H$ NMR spectra:

1. AB quartet at $\delta 3.51$ \& $3.61(2 H)$ of (E)-isomer appeared as a singlet at $\delta 3.44(2 H)$ in (Z)isomer.
2. Multiplet at δ 4.31-4.50(3H) and doublet of doublet at $\delta 4.77$ (1H) of (E)-isomer appeared as a (two) broad singlets at $\delta 4.48(2 H) \& 4.81(2 H)$ in (Z)-isomer.

In ${ }^{13} C$ NMR spectra:
3. Allyloxy carbons $\left(C_{3} \& C_{6}\right)$ of (E)-isomer appeared at $\delta 66.21 \& 72.33$ where as these carbons appeared at $\delta 64.42 \& 69.84$ in (Z)-isomer.
(4E,16E)-11,11-Dimethyl-2,8-dioxa-16-methoxycarbonyltricyclo[16.4.0.0 ${ }^{9,14}$]docosane-1(18)-4,9(14),16,19,21-hexaen-13-one (6k):

Yield: 70%; reaction time: $(1 \mathrm{~h}+2 \mathrm{~h})$; colorless solid; mp: $120-122{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}):$: 1716,1641 , $1606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.03(\mathrm{~s}, 6 \mathrm{H}), 2.23(\mathrm{~s}, 4 \mathrm{H}), 2.28(\mathrm{~s}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 2 \mathrm{H})$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.95(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~s}, 2 \mathrm{H}), 5.57-5.70(\mathrm{~m}, 2 \mathrm{H}), 6.96-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.76(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.14,28.61,31.75,32.02,39.77,49.97,51.69,65.56,73.06,116.11,119.42,122.50$, $126.68,129.58,129.65,130.68,131.10,132.03,133.99,156.93,168.98,169.04,197.19 ;$ LCMS $(\mathrm{m} / \mathrm{z}): 397(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}: \mathrm{C}, 72.70 ; \mathrm{H}, 7.12$; Found: C, 72.59; H, 7.18.

Crystal data for 6k: Empirical formula, $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}$; Formula weight, 396.48; crystal color, colorless; habit, block; crystal dimensions, $0.48 \times 0.44 \times 0.40 \mathrm{~mm}^{3}$; crystal system, triclinic; lattice type, primitive; lattice parameters, $\mathrm{a}=8.4362(9) \AA, \mathrm{b}=10.6638(12) \AA, \mathrm{c}=12.5335(14)$ $\AA, \alpha=76.146(2), \beta=79.366(2), \gamma=84.811(2) ; V=1074.7(2) \AA^{3} ;$ space group, $p-1 ; Z=2 ; D_{\text {cald }}$ $=1.225 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=480 ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=0.0850, \mathrm{wR}^{2}=0.2211$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound 6k CCDC \# 917199).

ORTEP diagram of compound $\mathbf{6 k}$
(4E,16E)-2,8-Dioxa-16-methoxycarbonyltricyclo[16.4.0.0 $\left.{ }^{9,14}\right]$ docosane-1(18),4,9(14),16,19-
21-hexaen-13-one (61):

Yield: 78%; reaction time: $(1 \mathrm{~h}+2 \mathrm{~h})$; colorless solid; mp: $144-146{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v 1712,1637$, $1606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.84-1.94(\mathrm{~m}, 2 \mathrm{H}), 2.19-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=6.8$ Hz, 2H), 2.43 (t, $J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.60(\mathrm{~s}, 2 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59-4.72$ $(\mathrm{m}, 2 \mathrm{H}), 5.57-5-71(\mathrm{~m}, 2 \mathrm{H}), 6.96-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.31$ $(\mathrm{d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 20.76,21.17,25.77,31.90$, 36.16, 51.46, 65.55, 73.03, 117.25, 119.36, 122.36, 126.66, 129.50, 129.63, 130.60, 131.15, 132.12, 134.00, 156.75, 168.90, 170.71, 197.41; LCMS (m/z): $369(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}: \mathrm{C}, 71.72 ; \mathrm{H}, 6.57$; Found: C, 71.85; H, 6.51.

In addition, (three) doublets at $\delta 6.92,7.12,7.20$ and a singlet at $\delta 7.65$ with low intensity also appeared. These may be attributed to the minor (Z)-isomer ($\approx 2 \%$) (at C4-C5 double bond).
(6Z,16E)-2,9-Dioxa-17-methoxycarbonyltricyclo[17.3.0.0 ${ }^{10,15}$]docosane-1(19),6,10(15),11,13-16-hexaen-20-one (6m):

Yield: 82%; reaction time: $(1 \mathrm{~h}+2 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 124-126{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}): v 1699,1633$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.60-1.72(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.50(\mathrm{~m}, 4 \mathrm{H})$, $3.39(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.62-5.78(\mathrm{~m}, 2 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-7.00(\mathrm{~m}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.85(\mathrm{~s}$, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) : δ 20.51, 24.64, 24.78, 28.92, 33.14, 51.77, 65.88, 68.14, $112.39,117.56,120.85,124.14,125.74,129.35,130.15,130.49,134.42,136.62,156.20,168.29$, 183.87, 203.64; LCMS (m/z): $369(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}: \mathrm{C}, 71.72 ; \mathrm{H}, 6.57$; Found: C, 71.58; H, 6.65.

Crystal data for 6m: Empirical formula, $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}$; Formula weight, 368.41; crystal color, colorless; habit, block; crystal dimensions, $0.48 \times 0.44 \times 0.40 \mathrm{~mm}^{3}$; crystal system, triclinic; lattice type, primitive; lattice parameters, $\mathrm{a}=8.6741(9) \AA, \mathrm{b}=9.1126(9) \AA, \mathrm{c}=12.8419(11) \AA, \alpha$ $=96.627(7), \beta=102.887(8), \gamma=106.395(9) ; \mathrm{V}=931.84(15) \AA^{3}$; space group, $\mathrm{p}-1 ; \mathrm{Z}=2 ; \mathrm{D}_{\text {cald }}=$ $1.313 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=392 ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=0.0471, \mathrm{wR}^{2}=0.1214$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound 6m CCDC \# 915410).

ORTEP diagram of compound $\mathbf{6 m}$
(7Z,17E)-2,10-Dioxa-18-methoxycarbonyltricyclo[18.3.0.0 $\left.{ }^{11,16}\right]$ tricosane-1(20),7,11(16),12-14,17-hexaen-21-one (6n):

Yield: 91%; reaction time: $(1 \mathrm{~h}+2 \mathrm{~h})$; colorless solid; mp: $152-154{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): v 1714,1689$, $1626 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 1.44-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.68(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.16(\mathrm{~m}$, $2 \mathrm{H}), 2.23-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.42(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, $4.44(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-5.98(\mathrm{~m}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.96(\mathrm{~m}, 1 \mathrm{H}), 7.20-$ $7.30(\mathrm{~m}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 20.23,24.43,24.86,27.45,28.85$, 33.27, 51.80, 62.21, 68.44, 110.60, 117.77, 120.09, 124.04, 124.71, 129.12, 129.60, 130.46, 135.53, 138.03, 156.50, 168.74, 183.80, 203.64; LCMS (m/z): $383(\mathrm{M}+\mathrm{H})^{+}$; Analysis calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}: \mathrm{C}, 72.23 ; \mathrm{H}, 6.85$; Found: C, 72.38; H, 6.79.

In addition, (three) singlets at $\delta 3.41,3.76,7.90$, a doublet at $\delta 4.60$ and a multiplet at $\delta 5.60$ 5.81 with low intensity also appeared. These may arise due to the presence of minor (Z)-isomer ($\approx 2 \%$) (C7-C8 double bond).

Crystal data for 6 n : Empirical formula, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$; Formula weight, 382.44; crystal color, colorless; habit, block; crystal dimensions, $0.36 \times 0.28 \times 0.24 \mathrm{~mm}^{3}$; crystal system, monoclinic; lattice type, primitive; lattice parameters, $\mathrm{a}=12.4423(16) \AA, \mathrm{b}=12.3999(16) \AA, \mathrm{c}=13.5967(18)$ $\AA, \alpha=90.00, \beta=97.190(2), \gamma=90.00 ; V=2081.2(5) \AA^{3}$; space group, $\mathrm{p} 2(1) / \mathrm{n} ; \mathrm{Z}=4 ; \mathrm{D}_{\text {cald }}=$ $1.221 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=816 ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=0.0662, \mathrm{wR}^{2}=0.2083$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound 6n CCDC \# 917200).

ORTEP diagram of compound $\mathbf{6 n}$
Each of carbons, C19 and C20, exhibit disorder, they are modeled using two positions of 0.6 and 0.4 occupancy each.
(11E,21E)-2,14-Dioxa-22-methoxycarbonyltricyclo[22.3.0.0 ${ }^{15,20}$]heptacosane-1(24),11-15(20),16,18,21-hexaen-25-one (6o):

Yield: 85%; reaction time: $(1 \mathrm{~h}+2 \mathrm{~h})$; colorless solid; mp: $107-108{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}):$: 1711,1680 , $1624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 1.09-1.35(\mathrm{~m}, 8 \mathrm{H}), 1.34-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.50-1.62(\mathrm{~m}$, $2 \mathrm{H}), 2.09-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.43(\mathrm{~m}, 2 \mathrm{H}), 2.54-2.62(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.02(\mathrm{t}$,
$J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.62-5.80(\mathrm{~m}, 2 \mathrm{H}), 6.87-6.98(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.30(\mathrm{~m}$, $1 \mathrm{H}), 7.34(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 21.59,24.89,25.55$, $26.78,27.79,28.59,29.38,29.85,31.44,33.24,51.88,69.41,69.67,113.67,117.90,120.71$, $125.30,125.88,129.47,129.62,130.17,134.57,135.71,156.66,168.85,183.99,204.02 ;$ LCMS $(\mathrm{m} / \mathrm{z}): 439(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{5}: \mathrm{C}, 73.94$; H, 7.81; Found: C, 73.85; H, 7.78.

Crystal data for 6o: Empirical formula, $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{O}_{5}$; Formula weight, 438.54; crystal color, colorless; habit, block; crystal dimensions, $0.48 \times 0.40 \times 0.20 \mathrm{~mm}^{3}$; crystal system, monoclinic; lattice type, primitive; lattice parameters, $\mathrm{a}=12.518(2) \AA$, $\mathrm{b}=8.3814(13) \AA, \mathrm{c}=23.699(4) \AA$, α $=90.00, \beta=103.330(3), \gamma=90.00 ; V=2419.5(7) \AA^{3}$; space group, $\mathrm{p} 2(1) / \mathrm{c} ; \mathrm{Z}=4 ; \mathrm{D}_{\text {cald }}=1.204$ $\mathrm{g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=944 ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=0.0828, \mathrm{wR}^{2}=0.2250$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound 6o CCDC \# 915411).

ORTEP diagram of compound $6 \mathbf{0}$
In the compounds 7a-E-7e-E/7a-Z-7e-Z, stereochemistry refers to the newly formed double bond after RCM reaction.
(4E,15E)-10,10-Dimethyl-2,7-dioxa-15-methoxycarbonyltricyclo[15.3.1.0 ${ }^{8,13}$]henicosane-1(21),4,8(13),15,17,19-hexaen-12-one (7a-E):

Yield: 56%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 170-172{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}):$ v 1705,1651 , $1610 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.96(\mathrm{~s}, 6 \mathrm{H}), 2.08(\mathrm{~s}, 2 \mathrm{H}), 2.27(\mathrm{~s}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H})$, $3.79(\mathrm{~s}, 3 \mathrm{H}), 4.43(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.60-4.68(\mathrm{~m}, 2 \mathrm{H}), 5.68-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.90(\mathrm{~m}, 1 \mathrm{H})$, $6.67(\mathrm{~s}, 1 \mathrm{H})^{*}, 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.0 \& 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.56$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 21.79,28.36,32.03,39.95,50.63,51.94,66.97,69.03$, $117.05,118.35,118.99,122.93,129.15,129.54,132.31,132.65,137.07,137.13,157.06,168.48$, 169.25, 197.22; LCMS (m/z): $383(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}: \mathrm{C}, 72.23 ; \mathrm{H}, 6.85$; Found : C, 72.15; H, 6.91.

* Unresolved doublet.

Crystal data for 7a-E: Empirical formula, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$; Formula weight, 382.44; crystal color, colorless; habit, block; crystal dimensions, $0.28 \times 0.18 \mathrm{x} 0.10 \mathrm{~mm}^{3}$; crystal system, orthorhombic; lattice type, primitive; lattice parameters, $\mathrm{a}=12.1101(10) \AA, \mathrm{b}=12.3001(10) \AA, \mathrm{c}$ $=13.4920(11) \AA, \alpha=90.00, \beta=90.00, \gamma=90.00 ; \mathrm{V}=2009.7(3) \AA^{3}$; space group, $\mathrm{p} 2(1) \mathrm{p} 2(1) \mathrm{p} 2(1) ; \mathrm{Z}=4 ; \mathrm{D}_{\text {cald }}=1.264 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=816 ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=$ $0.0631, \mathrm{wR}^{2}=0.1395$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound 7a-E CCDC \# 915412).

ORTEP diagram of compound 7a-E
(4Z,15E)-10,10-Dimethyl-2,7-dioxa-15-methoxycarbonyltricyclo[15.3.1.0 ${ }^{8,13}$]henicosane-1(21),4,8(13),15,17,19-hexaen-12-one (7a-Z):

Yield: 27%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: 162-164 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 1709, 1649, $1622 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.01(\mathrm{~s}, 6 \mathrm{H}), 2.18(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H})$, $3.76(\mathrm{~s}, 3 \mathrm{H}), 4.59-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.92(\mathrm{~m}, 2 \mathrm{H}), 5.82-5.94(\mathrm{~m}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, $6.85(\mathrm{dd}, J=8.0 \& 1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~s}, 1 \mathrm{H}), 7.53(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 21.14,28.43,31.99,39.89,50.24,51.99,61.83,65.14,113.60,117.55,117.83$, 122.70, 125.63, 129.38, 132.84, 134.07, 137.66, 158.00, 168.51, 169.12, 197.35; LCMS (m/z):
$383(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 72.23 ; $\mathrm{H}, 6.85$; Found : C, 72.36; H, 6.79.
Following differences were observed between ${ }^{1} H \&{ }^{13} C$ NMR spectra of $(E)-\&(Z)$ - isomers.
In ${ }^{1} H$ NMR spectra:

1. Multiplets at $\delta 5.68-5.78(1 \mathrm{H})$ and 5.80-5.90(1H) of (E)-isomer appeared as one multiplet at δ 5.82-5.94 (2H) in (Z)-isomer.
2. Singlet at $\delta 6.67(1 H)$ of (E)-isomer appeared as a singlet at $\delta 7.39(1 H)$ in (Z)-isomer. In ${ }^{13} C$ NMR spectra:
3. Allyloxy carbons $\left(C_{3} \& C_{6}\right)$ of (E)-isomer appeared at $\delta 66.97 \& 69.03$ where as these carbons appeared at $\delta 61.83 \& 65.14$ in (Z)-isomer.

Crystal data for 7a-Z: Empirical formula, $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$; Formula weight, 382.44; crystal color, colorless; habit, block; crystal dimensions, $0.40 \times 0.36 \times 0.30 \mathrm{~mm}^{3}$; crystal system, monoclinic; lattice type, primitive; lattice parameters, $a=25.1535(18) ~ \AA, b=8.7953(6) \AA, c=36.307(3) \AA, \alpha$ $=90.00, \beta=96.4190(10), \gamma=90.00 ; V=7982.0(10) \AA^{3}$; space group, $\mathrm{c} 2 / \mathrm{c} ; \mathrm{Z}=16 ; \mathrm{D}_{\text {cald }}=1.273$ $\mathrm{g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=3264 ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=0.0595, \mathrm{wR}^{2}=0.1482$. Detailed X-ray
crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound 7a-Z CCDC \# 917201).

ORTEP diagram of compound 7a-Z
(4E,15E)-2,7-Dioxa-15-methoxycarbonyltricyclo[15.3.1.0 ${ }^{8,13}$]henicosane-1(21),4,8(13),15,17-19-hexaen-12-one (7b-E):

Yield: 58%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $126-128{ }^{\circ} \mathrm{C}$; IR (KBr): v 1707, 1647, $1608 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.71-1.82(\mathrm{~m}, 2 \mathrm{H}), 2.19(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.40(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 2 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.45(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.68-$ $5.79(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.89(\mathrm{~m}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{dd}, J=8.0 \& 2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.59,22.17,25.87$, $36.80,51.98,66.88,68.75,116.89,118.16,120.52,122.64,129.15,129.55,132.28,132.66$, 137.07, 137.29, 156.94, 169.29, 170.34, 197.47; LCMS (m/z): $355(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5}: \mathrm{C}, 71.17$; H, 6.26; Found : C, 71.08; H, 6.31.
(4Z,15E)-2,7-Dioxa-15-methoxycarbonyltricyclo[15.3.1.0 ${ }^{8,13}$]henicosane-1(21),4,8(13),15,17-19-hexaen-12-one (7b-Z):

Yield: 32%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $130-132{ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): \mathrm{v} 1718,1655$, $1602 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.82-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.28(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.58-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.82-4.92(\mathrm{~m}, 2 \mathrm{H}), 5.82-5.94(\mathrm{~m}$, $2 \mathrm{H}), 6.78(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dd}, J=8.0 \& 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{~s}, 1 \mathrm{H})$, $7.51(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 20.90,21.34,25.93,36.45,51.97,62.03,65.50$, $113.83,117.49,118.60,122.66,125.49,129.31,132.99,134.10,137.46,137.77,157.99,169.19$, 170.35, 197.63; LCMS (m/z): $355(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{5}: \mathrm{C}, 71.17 ; \mathrm{H}, 6.26$; Found : C, 71.36; H, 6.19.

Following differences were observed between ${ }^{1} H \quad \&{ }^{13} C N M R$ spectra of $(E)-\&(Z)$ - isomers. In ${ }^{1} H$ NMR spectra:

1. Multiplets at $\delta 5.68-5.79(1 \mathrm{H})$ and 5.80-5.89 (1H) of (E)-isomer appeared as one multiplet at δ 5.82-5.94 (2H) in (Z)-isomer.
2. Singlet at $\delta 6.62(1 H)$ of (E)-isomer appeared as a singlet at $\delta 7.32(1 H)$ in (Z)-isomer.

In ${ }^{13}$ C NMR spectra
3. Allyloxy carbons $\left(C_{3} \& C_{6}\right)$ of (E)-isomer appeared at $\delta 66.88 \& 68.75$ where as these carbons appeared at $\delta 62.03 \& 65.50$ in (Z)-isomer.
(4E,14E)-2,7-Dioxa-14-methoxycarbonyltricyclo[14.3.1.0 ${ }^{8,12}$]icosane-1(20),4,8(12),14,16,18-hexaen-11-one ($7 \mathrm{c}-E$):

Yield: 48%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp : $116-118{ }^{\circ} \mathrm{C}$; IR (KBr): v 1716, 1687, $1624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.36-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.52-2.60(\mathrm{~m}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 2 \mathrm{H})$, $3.84(\mathrm{~s}, 3 \mathrm{H}), 4.56-4.67(\mathrm{~m}, 4 \mathrm{H}), 5.74-5.94(\mathrm{~m}, 2 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92$ $(\mathrm{dd}, J=8.0 \& 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ $21.52,25.25,33.85,52.07,68.28,69.51,117.33,118.95,121.82,123.05,127.95,129.30,130.92$, 132.15, 136.99, 138.45, 157.34, 168.96, 183.03, 204.10; LCMS (m/z): $341(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}: \mathrm{C}, 70.57$; H, 5.92; Found : C, $70.68 ; \mathrm{H}, 5.88$.
(4Z,14E)-2,7-Dioxa-14-methoxycarbonyltricyclo[14.3.1.0 ${ }^{8,12}$]icosane-1(20),4,8(12),14,16,18-hexaen-11-one ($7 \mathrm{c}-\mathrm{Z}$):

Yield: 31%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $146-148{ }^{\circ} \mathrm{C}$; IR (KBr): v 1716,1685 , $1630 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.45-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.73(\mathrm{~m}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 2 \mathrm{H})$, $3.78(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.96(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-6.00(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.92(\mathrm{~m}$, 2H), 7.23-7.32 (m, 1H), 7.63(s, 1H), $7.69(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 20.65,24.78$, $33.59,52.06,63.47,64.74,113.36,117.62,119.29,123.21,123.61,129.59,130.56,136.93$,
137.12, 139.29, 158.01, 168.87, 182.86, 203.40; LCMS (m/z): $341(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{5}: \mathrm{C}, 70.57 ; \mathrm{H}, 5.92$; Found : C, $70.45 ; \mathrm{H}, 5.88$.

Following differences were observed between ${ }^{1} H \quad \&{ }^{13} C$ NMR spectra of $(E)-\&(Z)$ - isomers. 1. Singlet at $\delta 6.57(1 H)$ of (E)-isomer appeared as a singlet at $\delta 7.63(1 H)$ in (Z)-isomer in ${ }^{1} H$ NMR spectra .
2. Allyloxy carbons $\left(C_{3} \& C_{6}\right)$ of (E)-isomer appeared at $\delta 68.28 \& 69.51$ where as these carbons appeared at $\delta 63.47 \& 64.74$ in (Z)-isomer in ${ }^{13}$ C NMR spectra.
(4E,15E)-2,7-Dioxa-20-methoxy-15-methoxycarbonyltricyclo[15.3.1.0 ${ }^{8,13}$]henicosane-1(21)-4,8(13),15,17,19-hexaen-12-one (7d-E):

Yield: 53%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp : $112-114{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}):$ v 1701,1651 , $1606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.79-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.24(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.47(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.65-5.78(\mathrm{~m}, 1 \mathrm{H}), 5.84-5.96(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.90(\mathrm{~m}, 2 \mathrm{H}), 7.50$ (s, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): δ 20.72, 22.12, 25.98, 36.90, 51.89, 55.89, 66.86, 69.42, $111.29,119.92,120.60,124.40,128.71,129.84,131.56,132.31,136.86,145.54,150.15,169.52$, 170.44, 197.43; LCMS (m/z): $385(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}: \mathrm{C}, 68.74 ; \mathrm{H}, 6.29$; Found : C, 68.61; H, 6.22.

In addition, peaks at $\delta 1.90-1.95(\mathrm{~m}), 2.32(\mathrm{t}), 2.51(\mathrm{t}), 3.59(\mathrm{~s}), 3.76(\mathrm{~s}), 4.96(\mathrm{~d}), 7.47(\mathrm{~s})$ and 7.56 (d) also appeared with low intensity. These may arise due to the presence minor (Z)isomeric ($\approx 5 \%$).
(4Z,15E)-2,7-Dioxa-20-methoxy-15-methoxycarbonyltricyclo[15.3.1.0 ${ }^{8,13}$]henicosane-1(21)-4,8(13),15,17,19-hexaen-12-one (7d-Z):

Yield: 33%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $124-126{ }^{\circ} \mathrm{C}$; IR (KBr): v 1701, 1649, $1618 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.89-1.98(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.52(\mathrm{t}, J$ $=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.61-4.66(\mathrm{~m}, 2 \mathrm{H}), 4.89-5.01(\mathrm{~m}, 2 \mathrm{H})$, 5.85-6.00 (m, 2H), 6.78-6.90 (m, 2H), 7.47(s, 1H), $7.52(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.93,21.29,26.06,36.58,51.89,55.96,61.97,65.82,111.26,114.43,118.91$, 124.16, 125.37, 128.98, 131.06, 134.68, 137.41, 146.95, 149.36, 169.45, 170.06, 197.73; LCMS $(\mathrm{m} / \mathrm{z}): 385(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{6}: \mathrm{C}, 68.74 ; \mathrm{H}, 6.29$; Found : C, 68.88; H, 6.21. In addition, peaks with low intensity appeared at $\delta 1.80-1.89(\mathrm{~m}), 2.22(\mathrm{t}), 2.49(\mathrm{t}), 3.44(\mathrm{~s})$, $3.80(\mathrm{~s}), 4.48(\mathrm{~d})$ and $7.51(\mathrm{~s})$ probably due to the presence of minor (E)-isomer $(\approx 4 \%)$.

Following differences were observed between ${ }^{1} H \quad \&{ }^{13} C$ NMR spectra of $(E)-\&(Z)$ - isomers. In ${ }^{1} H$ NMR spectra:

1. Multiplets at δ 5.65-5.78 (1H) and 5.84-5.96 (1H) of (E)-isomer appeared as a single multiplet at δ 5.85-6.00 (2H) in (Z)-isomer.
2. Doublet at $\delta 6.72(1 H)$ of (E)-isomer appeared as a doublet at $\delta 7.52(1 H)$ in (Z)-isomer.

In ${ }^{13}$ C NMR spectra
3. Allyloxy carbons ($C_{3} \& C_{6}$) of (E)-isomer appeared at $\delta 66.86 \& 69.42$ where as these carbons appeared at $\delta 61.97 \& 65.82$ in (Z)-isomer.
(4E,14E)-2,7-Dioxa-19-methoxy-14-methoxycarbonyltricyclo[14.3.1.0 ${ }^{8,12}$]icosane-1(20),4-8(12),14,16,18-hexaen-11-one (7e-E):

Yield: 48%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 150-152{ }^{\circ} \mathrm{C}$; IR (KBr): v 1718, 1682 , $1616 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.39-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.55-2.61(\mathrm{~m}, 2 \mathrm{H}), 3.32(\mathrm{~s}, 2 \mathrm{H})$, $3.83(\mathrm{~s}, 3 \mathrm{H}), 3.89(\mathrm{~s}, 3 \mathrm{H}), 4.58-4.68(\mathrm{~m}, 4 \mathrm{H}), 5.74-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.92-6.04(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=$ $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85-6.94(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.61,25.22$, 33.86, 51.99, 55.83, 68.09, 70.15, 111.48, 120.62, 121.35, 124.82, 128.35, 128.42, 129.53, 131.75, 138.24, 145.71, 150.79, 169.12, 182.98, 203.94; LCMS (m/z): $371(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}: \mathrm{C}, 68.10 ; \mathrm{H}, 5.99$; Found : C, $68.25 ; \mathrm{H}, 6.05$.
(4Z,14E)-2,7-Dioxa-19-methoxy-14-methoxycarbonyltricyclo[14.3.1.0 ${ }^{8,12}$]icosane-1(20),4-8(12),14,16,18-hexaen-11-one (7e-Z):

Yield: 28%; reaction time: $(1 \mathrm{~h}+4 \mathrm{~h})$; colorless solid; mp: $184-186{ }^{\circ} \mathrm{C}$; IR (KBr): v 1701, 1680 , $1624 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 2.45-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.74(\mathrm{~m}, 2 \mathrm{H}), 3.44(\mathrm{~s}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 4.73(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.07(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-6.04(\mathrm{~m}, 2 \mathrm{H})$, $6.88(\mathrm{~s}, 2 \mathrm{H}), 7.59(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.54,24.72,33.59$, 51.94, 55.92, $63.41,65.22,111.21,113.57,119.31,123.53,124.43,128.29,128.53,137.23$,
139.11, 146.92, 149.27, 169.08, 182.69, 203.39; LCMS (m/z): $371(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6}: \mathrm{C}, 68.10 ; \mathrm{H}, 5.99$; Found : C, 68.21; H, 5.91.

Following differences were observed between ${ }^{1} H \&{ }^{13} C N M R$ spectra of (E)-\& (Z)- isomers.
In ${ }^{l} H$ NMR spectra:

1. Multiplets at δ 5.74-5.86(1H) and 5.92-6.04 (1H) of (E)-isomer appeared as one multiplet at δ 5.86-6.04 (2H) in (Z)-isomer.
2. Doublet at $\delta 6.67(1 H)$ of (E)-isomer appeared as a singlet at $\delta 7.59(1 H)$ in (Z)-isomer.

In ${ }^{13} C$ NMR spectra:
3. Allyloxy carbons $\left(C_{3} \& C_{6}\right)$ of (E)-isomer appeared at $\delta 68.09 \& 70.15$ where as these carbons appeared at $\delta 63.41 \& 65.22$ in (Z)-isomer.
(4E,16E)-11,11-Dimethyl-2,8-dioxa-16-methoxycarbonyltricyclo[16.3.1.0 ${ }^{9,14}$]docosane-1(22)-4,9(14),16,18,20-hexaen-13-one (7f):

Yield: 70\%; reaction time: $(1 \mathrm{~h}+2 \mathrm{~h})$; colorless solid; mp: 102-104 ${ }^{\circ} \mathrm{C}$; IR (KBr): v 1709, 1641, $1616 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 0.96(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 2 \mathrm{H}), 2.23(\mathrm{~s}, 2 \mathrm{H}), 2.35-2.46(\mathrm{~m}$, $2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 3.91(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.55-5.64(\mathrm{~m}$, $1 \mathrm{H}), 5.65-5.74(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})^{*}, 6.95(\mathrm{~s}, 1 \mathrm{H}), 7.14-$
$7.22(\mathrm{~m}, 1 \mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 20.47,28.45,31.90,32.59,39.22$, $50.32,52.06,66.60,67.44,114.15,115.89,117.45,122.36,127.60,129.12,130.18,133.51$, 136.28, 137.55, 157.46, 168.87, 169.73, 197.36; LCMS (m/z): $397(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{O}_{5}$: C, 72.70; H, 7.12; Found: C, 72.81; H, 7.08.

* Unresolved doublet of doublet (dd).
(4E,16E)-2,8-Dioxa-16-methoxycarbonyltricyclo[16.3.1.0 ${ }^{9,14}$]docosane-1(22),4,9(14),16,18-20-hexaen-13-one (7 g):

Yield: 79%; reaction time: $(1 \mathrm{~h}+2 \mathrm{~h})$; colorless solid; mp : $120-122{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}):$ v 1699,1641 , $1606 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.78-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.23(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.43$ $(\mathrm{m}, 4 \mathrm{H}), 3.55(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{t}, J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.55-5.64$ $(\mathrm{m}, 1 \mathrm{H}), 5.65-5.73(\mathrm{~m}, 1 \mathrm{H}), 6.72(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84(\mathrm{dd}, J=8.0 \& 2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.90(\mathrm{~s}$, 1H), 7.15-7.21 (m, 1H), $7.42(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.72,20.77,25.31,32.47$, $36.49,51.97,66.57,67.50,114.21,116.98,117.40,122.24,127.64,129.04,130.10,133.59$, 136.17, 137.60, 157.44, 169.73, 170.70, 197.58; LCMS (m/z): $369(\mathrm{M}+\mathrm{H})^{+}$; Analysis calc'd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}$: C, $71.72 ; \mathrm{H}, 6.57$; Found: C, 71.63; H, 6.61.

Crystal data for $7 \mathbf{g}$: Empirical formula, $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}$; Formula weight, 368.41; crystal color, colorless; habit, block; crystal dimensions, $0.20 \times 0.18 \times 0.10 \mathrm{~mm}^{3}$; crystal system, monoclinic; lattice type, primitive; lattice parameters, $\mathrm{a}=15.8167(12) \AA, \mathrm{b}=8.2210(6) \AA, \mathrm{c}=15.9694(12)$ $\AA, \alpha=90.00, \beta=116.3120(10), \gamma=90.00 ; \mathrm{V}=1861.3(2) \AA^{3} ;$ space group, $\mathrm{p} 2(1) / \mathrm{n} ; \mathrm{Z}=4 ; \mathrm{D}_{\text {cald }}=$ $1.315 \mathrm{~g} / \mathrm{cm}^{3} ; \mathrm{F}_{000}=784 ; \lambda(\mathrm{Mo}-\mathrm{K} \alpha)=0.71073 \AA ; \mathrm{R}\left(\mathrm{I} \geq 2 \sigma_{1}\right)=0.0519, \mathrm{wR}^{2}=0.1368$. Detailed X-ray crystallographic data is available from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK (for compound 7g CCDC \# 915413).

ORTEP diagram of compound $\mathbf{7 g}$
(4E,17E)-2,9-Dioxa-17-methoxycarbonyltricyclo[17.3.1.0 $\left.{ }^{10,15}\right]$ tricosane-1(23),4,10(15),17,19-

21-hexaen-14-one (7h):

Yield: 81%; reaction time: $(1 \mathrm{~h}+2 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 80-82{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}):$ v 1712,1655 , $1604 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.64-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.88(\mathrm{~m}, 2 \mathrm{H}), 2.03-2.14(\mathrm{~m}$, $2 \mathrm{H}), 2.26(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.35(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{t}, J=6.4$ $\mathrm{Hz}, 2 \mathrm{H}), 4.64(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.46-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.66-5.80(\mathrm{~m}, 1 \mathrm{H}), 6.78-6.92(\mathrm{~m}, 3 \mathrm{H})$, 7.17-7.24 (m, 1H), $7.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 20.78,21.33,25.75,28.59$, $29.21,36.44,51.82,66.80,68.79,114.94,117.39,117.79,122.09,126.76,129.12,132.54$, 134.85, 137.50, 137.61, 157.63, 169.21, 171.71, 197.10; LCMS (m/z): $383(\mathrm{M}+\mathrm{H})^{+}$; Analysis calcd. for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{O}_{5}$: C, 72.23 ; $\mathrm{H}, 6.85$; Found: C, 72.35 ; H, 6.79.
(4E,16E)-2,9-Dioxa-16-methoxycarbonyltricyclo[16.3.1.0 ${ }^{10,14}$]docosane-1(22),4,10(14),16,18-20-hexaen-13-one (7i):

Yield: 85%; reaction time: $(1 \mathrm{~h}+2 \mathrm{~h})$; colorless solid; $\mathrm{mp}: 80-82^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}):$ v 1711,1678 , $1616 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 1.82-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.39-2.50(\mathrm{~m}$, $2 \mathrm{H}), 2.58-2.68(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 3.86(\mathrm{~s}, 3 \mathrm{H}), 4.15(\mathrm{t}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.55(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, 2H), 5.64-5.76 (m, 1H), 5.86-5.98(m, 1H), 6.82-6.94 (m, 2H), $6.98(\mathrm{~s}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}$, 1H), $7.63(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 21.61,23.69,25.06,28.35,33.31,52.16$, $63.98,67.28,114.26,115.91,117.59,123.42,126.25,129.30,130.63,133.98,137.07,137.70$, 158.36, 169.33, 183.44, 203.36; LCMS (m/z): $369(\mathrm{M}+\mathrm{H})^{+}$; Analysis calcd. for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{O}_{5}: \mathrm{C}$, 71.72; H, 6.57; Found: C, 71.63; H, 6.51.

-25.45
-20.18

-196.78

77.42
$<\quad 77.11$
-76.79
75.42
-66.11
51.90
-50.28

- 39.30
- 31.99
-28.40
-20.44

-155.43
133.19
133.13
$\mathbf{1} 33.06$
132.85
132.69
129.14
123.89
117.95
116.29
77.42
$<$
77.10
76.78
75.17
-66.06
-51.84
-36.39
25.26
$<\quad 20.64$
$\mathbf{2 0 . 5 9}$

[^0]

77.42
<77.10
~ 76.79
72.48
-66.21
-55.82
-51.67

- 153.00
145.12
-136.19
136.19
133.89

J 130.65
-130.53
125.11
-123.82
-122.28
118.44
112.04
77.42
$<\quad 77.10$
76.78
-69.84
-64.42
-55.90
-51.98
-33.45

- 24.55
-19.95

- 197.35
169.12
168.51
-158.00
137.66
134.07
$=132.84$
$=129.38$
$=125.63$
122.70
$\left.=\begin{array}{r}117.83 \\ 117.55 \\ 113.60\end{array}\right)$
77.42
$\mathcal{K} 77.10$
76.79
-65.14
-61.83
-51.99
-50.24
- 39.89
-31.99
-28.43
-21.14

- 197.47
170.34
$\mathbf{1 6 9 . 2 9}$
-156.94
-137.29
$\begin{array}{r}137.29 \\ -137.07 \\ \hline 132.66\end{array}$
- 132.28
129.55
$\mathbf{1 2 9 . 1 5}$
> -122.64
118.16
116.89
77.42
<77.10
<76.79
-68.75
-51.98
-36.80
25.87
$-\quad 22.17$
-20.59

-204.10
-183.03
-168.96
-157.34
138.45

J/ $\begin{array}{r}136.99 \\ 132.15\end{array}$
130.92
-129.30
129.30
-127.95
-123.95
$\uparrow \begin{array}{r}123.05 \\ -121.82\end{array}$
-121.82
-118.95

-117.33
77.42
$<\quad 77.10$
$\times 76.79$
$\times 69.51$
68.28
-33.85
-25.25
-21.52

$\begin{array}{r}150.15 \\ 145.54 \\ 136.86 \\ \begin{array}{r}132.31 \\ 131.56 \\ 129.84 \\ 128.71 \\ 124.40 \\ 120.60 \\ 119.92 \\ 111.29\end{array} \\ \hline\end{array}$
77.42
$<\quad 77.10$
<76.78
-69.42
-66.86
-55.89
-51.89
-36.90
25.98
$\mathbf{F}^{22.12}$
$\mathbf{2 0 . 7 2}$

[^0]: 77.42
 $\begin{array}{r}77.11 \\ < \\ \hline 76.79\end{array}$
 72.60
 $-\quad 66.28$
 -55.85
 51.82
 $\times 50.37$

 - 39.33
 -32.00
 28.50
 <28.36
 -20.63

