Supporting Information :

Nanocrystalline Copper Indium Selenide (CuInSe₂) Particles for Solar Energy Harvesting

Mengxi Wang^{ab}, Sudip K. Batabyal^{a*}, Zhenggang Li^b, Dehui Li^c, Subodh G. Mhaisalkar^{ab} and Yeng Ming Lam^{b*}

^a Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Research Techno Plaza, Singapore 637553. E-mail: <u>batabyal@gmail.com</u>

^b School of Materials Science & Engineering, Nanyang Technological University, Singapore 639798. E-mail: <u>YMlam@ntu.edu.sg</u>

^c School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371.

Supporting Information S1:

Synthesis of CuSeO3 and In2(SeO3)3

We synthesized CuSeO₃ and In₂(SeO₃)₃ by simple precipitating reaction of NaSeO3 and corresponding

metal salts in aqueous medium. The ionic exchange reactions are described as below:

NaOH+SeO₂→NaSeO₃+H₂O

 $NaSeO3+Cu(NO_3)_2 \rightarrow CuSeO_3+NaNO_3$

NaSeO₃+InCl₃→In₂(SeO₃)₃+NaCl

Supporting Information S2:

Morphologies of (a) CuSeO₃ and (b) In₂(SeO₃)₃

Supporting Document S3

(a) XRD spectra and (b) FESEM image of products synthesized in DMF without co-solvent.

Supporting Document S4

FTIR spectrum of products synthesized in DMF without co-solvent.

Supporting Document $\mathbf{S5}$

Morphologies of CuInSe₂ for 48hr reactions at different precursor concentrations (a): 0.02M; (b):0.04M and (c): 0.08M in H₂O-DMF.

(a) (b) (c)

Supporting Information S6:

Typical EDX spectra of CuInSe₂

Supporting Information S7:

Photo current against potential (J-V) curves for $CuInSe_2$ nanocrystals synthesized with different precursor concentrations (0.02M, 0.04M and 0.08M) in Me-DMF for 24 hr.

