Supplementary Information

Development of novel synthetic routes to bis(perfluoroalkyl)-substituted anthracene derivatives

Dr. Shigeyuki Yamada, Keita Kinoshita, Shota Iwama, and Prof. Dr. Takashi Yamazaki*

Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakamachi, Koganei 184-8588, Tokyo, Japan Tel: +81 42 388 7038/Fax: +81 42 388 7038 E-mail: tyamazak@cc.tuat.ac.jp

Prof. Dr. Toshio Kubota

Department of Biomolecular Functional Engineering, Ibaraki University, Nakanarusawa 4-12-1, Hitachi 31-8511, Japan Tel: +81 294 38 5060/ Fax: +81 294 38 5078 E-mail: <u>t.kubota@mx.ibaraki.ac.jp</u>

Prof. Dr. Tomoko Yajima

Department of Chemistry, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan E-mail: <u>yajima.tomoko@ocha.ac.jp</u> **General:** ¹H, ¹³C and ¹⁹F NMR spectra were measured with a JEOL JNM-AL300 (300.40 MHz for ¹H, 75.45 MHz for ¹³C and 282.65 MHz for ¹⁹F) spectrometer in a chloroform-*d* (CDCl₃) solution with tetramethylsilane (Me₄Si) and hexafluorobenzene (C₆F₆: δ -163.00 ppm for ¹⁹F) as an internal reference. Infrared spectra (IR) were determined in a liquid film or KBr disk method with an FT/IR-4100 (JASCO). High resolution mass spectra were taken with a JEOL JMS-700 MS spectrometer. Elemental analyses were conducted with a PerkinElmer 2400 Series II CHNS/O System. Melting points were recorded on a Yamato Scientific MP-21 type instrument at atmospheric pressure. Column chromatography was carried out on silica gel (Kanto Chemical Co.,Inc., Silica gel 60) and TLC analysis was performed on silica gel TLC plates (Merck, Silica gel 60 F₂₅₄).

Materials: All reactions were carried out under an atmosphere of argon in dried glassware with magnetic stir bar. Anhydrous tetrahydrofuran (THF), diethyl ether and dichloromethane were purchased from Kanto Chemical Co., Inc. and used as received. CF₃SiMe₃ was commercially available from Central Glass Co., Ltd. *n*-Butyllithium was also commercially available from Kanto Chemical Co., Inc. Methyllithium-lithium bromide complex was purchased from Sigma-Aldrich[®]. The concentration of both *n*-Butyllithium and methyllithium-lithium bromide complex was determined by titration using 1,10-phenanthroline and *sec*-Butanol prior to use. All chemicals were of reagent grade and, if necessary, were purified in the usual manner prior to use.

Preparation of bromo-substituted anthraquinones 1b and 1d

2-Bromo-9,10-anthraquinone were prepared from the corresponding amino-counterparts according to reported procedure.¹ In a 100 mL round-bottomed flask with a magnetic stirrer bar was placed CuBr₂ (2.390 g, 10.7 mmol), *tert*-butyl nitrite (*tert*-BuONO, 1.103 g, 10.7 mmol), and MeCN (15 mL). To the suspension was added slowly a solution of 2-amino-9,10-anthraquinone (0.959 g, 4.30 mmol) in THF (35 mL), followed by stirring at room temperature for 20 h. After 20 h, the solvent was removed using rotary evaporator and the residue was filtered with rinsing by H₂O. The filter-cake was purified by silica-gel column chromatography using hexane/CH₂Cl₂ (1/1) as an eluent, giving pure 2-bromo-9,10-anthraquinone (0.984 g, 3.44 mmol, 80%) as a yellow solid.

2,6-Dibromo-9,10-anthraquinone (1d) was obtained in 52% yield by the reaction of 2,6-diamino-9,10-anthraquinone (2.380 g, 10 mmol) with CuBr_2 (4.470 g, 20 mmol) in the presence of tert-BuONO (2.4 mL, 20 mmol) in MeCN (40 mL) at 65 °C for 2 h, followed by the addition of 6N HCl aq. The obtained 1b and 1d are known compounds and were accordant with reported NMR data.

2-Bromo-9,10-anthraquinone (1b)

¹H NMR (CDCl₃) δ 7.83 (dd, J = 5.9, 3.3 Hz, 2H), 7.93 (dd, J = 8.4, 2.1 Hz, 2H), 8.18 (d, J = 8.4 Hz, 1H), 8.32 (m, 2H), 8.44 (d, J = 2.1 Hz, 1H). ¹³C NMR (CDCl₃) δ 127.3, 127.4, 129.0, 129.7, 130.2, 132.1, 133.2, 133.3, 134.3, 134.4, 134.5, 137.1, 182.0, 182.3.

2,6-Dibromo-9,10-anthraquinone (1d)

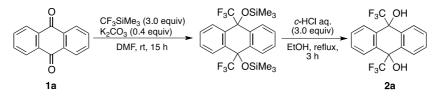
¹H NMR (CDCl₃) δ 7.95 (dd, J = 8.1, 2.1 Hz, 2H), 8.17 (d, J = 8.1 Hz, 2H), 8.44 (d, J = 2.1 Hz, 2H).

Preparation of iodo-substituted anthraquinones 1c and 1e

2-Iodo-9,10-anthraquinone (1c) were prepared from the corresponding amino-counterparts according to reported procedure.² In a 100 mL round-bottomed flask with a stirrer bar was placed 2-amino-9,10-anthraquinone (1.780 g, 8 mmol) and 10 mL of concentrated HCl aq. (*c*-HCl.). After cooling with ice-water bath, an aqueous solution of NaNO₂ (0.828 g, 12 mmol) in H₂O (7.0 mL) was added dropwise, followed by being stirred below 0 °C for 1 h. To the whole was added slowly an aqueous solution of NaI (4.940 g, 33 mmol) in H₂O (40 mL) *via* a syringe. After the addition, the reaction mixture was stirred at room temperature for 2 h, then continuously at 50 °C for overnight (approx. 15 h). To the reaction mixture was added aqueous solution solution solution solution solution was added aqueous solution solution solution was added aqueous solution solution solution was added aqueous solution was added aqueous solution solution was added aqueous solution was added added was added aqueous solution was added added was added aqueous solution was added was added

solution, followed by the extraction with CH_2Cl_2 (40 mL, 3 times). The organic layer was washed with aqueous NaOH solution, dried over Na₂SO₄, and concentrated by using rotary evaporator. The residue was column chromatographed by using hexane/ CH_2Cl_2 (1/1) as an eluent to obtain pure 2-iodo-9,10-anthraquinone (2.107 g, 6.30 mmol, 79%) as a reddish solid.

2,6-Diiodo-9,10-anthraquinone (1e) was obtained in 81% yield by the reaction of 2,6-diamino-9,10-anthraquinone (4.760 g, 20 mmol) with NaNO₂ (3.360 g, 44 mmol) in 105 mL of mixed solvent (MeCN/*c*-HCl aq. = 2/1) at 0 °C for 0.5 h, followed by adding KI (8.300 g, 50 mmol), was carried out at 60 °C for 13 h.³ The obtained 1b and 1d are known compounds and were accordant with reported NMR data.


2-Iodo-9,10-anthraquinone (1c)

¹H NMR (CDCl₃) δ 7.82 (dd, J = 5.7, 2.7 Hz, 2H), 8.00 (d, J = 8.1 Hz, 1H), 8.15 (dd, J = 8.1, 1.8 Hz, 2H), 8.30 (m, 2H), 8.49 (d, J = 1.8 Hz, 1H). ¹³C NMR (CDCl₃) δ 127.2, 127.3, 128.5, 132.4, 132.9, 133.1, 133.8, 134.0, 134.3, 134.4, 136.1, 143.0, 181.8, 182.5.

2,6-Diiodo-9,10-anthraquinone (1e)

¹H NMR (CDCl₃) δ 7.99 (d, *J* = 8.4 Hz, 2H), 8.18 (dd, *J* = 8.4, 1.8 Hz, 2H), 8.49 (d, *J* = 1.8 Hz, 2H).

Typical Procedure for the preparation of 9,10-bis(trifluoromethyl)-9,10dihydroanthracen-9,10-diol (2a)⁴

A 50 mL two-necked round-bottomed flask equipped with a magnetic stirrer bar, a rubber septum and an inlet tube for argon was charged with a 9,10-anthraquinone (2.082 g, 10 mmol) and K₂CO₃ (0.553 g, 4.0 mmol) in DMF (20 mL). To the solution was added CF₃SiMe₃ (3.30 mL, 22 mmol) via a syringe at 0 °C, followed by continuous stirring at room temperature for 15 h. After being stirred for 15 h, the whole was poured into mixed solution of sat. NH₄Cl (20 mL) and 1N HCl solution (5.0 mL), followed by extraction with Et₂O (40 mL, 3 times). The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated with a rotary evaporator. Column chromatography of the residue using hexane as an eluent vielded pure

9,10-bis(trifluoromethyl)-9,10-bis(trimethylsiloxy)-9,10-dihydroanthracene (4.039 g, 8.2 mmol, 82%) as a white solid.

9,10-bis(trifluoromethyl)-9,10-bis(trimethylsiloxy)-9,10-dihydroanthracene

F₃C OTMS Yield: 82% (white solid). M.P. 118 – 120 °C. ¹H NMR (CDCl₃) δ –0.10 (s, 18H), 7.48 – 7.55 (m, 4H), 7.93 – 7.99 (m, 4H). ¹⁹F NMR (CDCl₃) δ –79.29 (s). ¹³C F₃C OTMS NMR (CDCl₃) δ 1.7, 75.9 (q, J = 27.9 Hz), 125.7 (q, J = 289.0 Hz), 130.0, 130.7 (q, J= 3.1 Hz), 134.1. IR (KBr) v 3073, 2968, 1487, 1447, 1411, 1237, 1175, 1075, 944, 930, 876, 846 cm⁻¹. Anal. Calcd for: C, 53.64; H, 5.32. Found: C, 53.54; H, 5.38.

The bis(trimethylsilyl) ether obtained (3.541 g, 7.2 mmol) were mixed with concentrated hydrochloric acid (2.0 mL, 24 mmol) in EtOH (15 mL) and the whole was stirred at reflux temperature for 3 h. The reaction mixture was poured into aqueous saturated NH₄Cl solution (20 mL), followed by extraction with AcOEt (20 mL, 3 times). The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated with a rotary evaporator. Column chromatography of the residue using hexane/AcOEt (2/1) as an eluent yielded pure 9,10-bis(trifluoromethyl)-9,10-dihydroanthracen-9,10-diol (**2a**, 2.198 g, 6.3 mmol, 88%) as a white solid. In the preparation of **2b–e** were conducted hydrolysis without any purification of bis(trimethylsilyl) ether intermediates because the mixture of silyl ether and desilylated compounds were obtained in the first step.

9,10-Bis(trifluoromethyl)-9,10-dihydroanthracen-9,10-diol (2a)

F₃C OH Yield: 88% (white solid). M.P. 197 – 199 °C. ¹H NMR (Acetone- d_6) δ 6.52 – 6.54 (m, 2H), 7.55 – 7.63 (m, 4H), 8.02-8.16 (m, 4H). ¹⁹F NMR (Acetone- d_6) δ –76.98 (s). ¹³C NMR (Acetone- d_6) δ 73.7 (q, J =27.3 Hz), 125.7 (q, J = 287.8 Hz), 129.4 (q, J = 3.1 Hz), 129.7, 135.0. IR (KBr) v 3534, 3078, 1658, 1488, 1450, 1333, 1212, 1176, 1042, 912 cm⁻¹. Anal. Calcd for: C, 53.64; H, 5.32. Found: C, 53.54; H, 5.38.

2-Bromo-9,10-bis(trifluroomethyl)-9,10-dihydroanthracen-9,10-diol (2b)

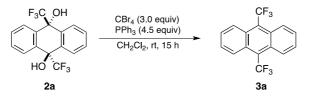
 F_3C OH
 Yield: Quant (white solid).
 M.P. 165.0 - 166.1 °C.
 ¹H NMR (CDCl₃)

 $\delta \square \square \square$ $\delta \square \square \square$ (dd, J = 6.0, 3.3 Hz, 2H), 7.71 (dd, J = 2.1 Hz, 1H), 7.91 (qd, J = 8.7, 2.3 Hz, 1H), 8.04 - 8.01 (m, 2H), 8.19 (t, J = 2.1 Hz, 1H).
 ¹⁹F NMR (CDCl₃)

 $\delta \square -79.34$ (s, 3F), -79.40 (s, 3F).
 ¹³C NMR (CDCl₃) δ 72.9 (q, J = 28.0 Hz), 73.0 (q, J = 28.0 Hz),

123.7 (q, J = 285.7 Hz), 123.8 (q, J = 285.7 Hz), 124.3, 128.3 (q, J = 2.9 Hz), 129.8, 129.9, 130.2 (q, J = 2.9 Hz), 131.5 (q, J = 3.1 Hz), 132.2, 132.7, 133.0, 135.2. IR (KBr) v 3516, 3302, 3175, 1754, 1622, 1591, 1481, 1335, 1284, 1185, 940, 753 cm⁻¹. HRMS (APCI–) Calcd for (M+) C₁₆H₉⁷⁹BrF₆O₂: 425.9690, Found 425.9667.

2-Iodo-9,10-bis(trifluoromethyl)-9,10-dihydroanthracen-9,10-diol (2c)


F₃C OHYield: 91% (white solid).M.P. 177.0 – 178.0 °C.¹H NMR (CDCl₃) $\delta \Box$ 7.56 (dd,J = 1.8, 6.0 Hz, 2H), 7.75 (dq, J=2.2, 8.5 Hz, 1H), 7.91 (dd, J=1.8, 8.4 Hz, 1H),8.04-8.00 (m, 2H), 8.39 (t, J = 2.1 Hz, 1H).¹⁹F NMR (CDCl₃) $\delta \Box$ –79.34 (s, 3F),-79.42 (s, 3F).¹³C NMR (CDCl₃) δ 73.5 (q, J = 27.8 Hz), 73.6 (q, J = 34.0 Hz), 123.9 (q, J =279.5 Hz), 129.3 (q, J = 2.3 Hz), 129.3, 129.4, 129.4, 130.1 (q, J = 2.9 Hz), 131.5 (q, J = 290.0),133.0, 133.2, 135.4, 137.4 (q, J = 3.1 Hz), 138.3, 138.4.IR (KBr) v 3514, 3317, 3193, 3083, 2821,1709, 1621, 1585, 1478, 1219, 934, 714, cm⁻¹.HRMS (FAB–) Calcd for (M+) C₁₆H₉F₆O₂I:473.9551, Found 473.9540.

2,6-Dibromo-9,10-bis(trifluoromethyl)-9,10-dihydroanthracen-9,10-diol (2d)

F₃C OH Br $F_{3}C$ OH $F_{3}C$ OH T.73 (dq, J = 8.4, 2.2 Hz, 2H), 7.93 (dd, J = 1.8, 8.7 Hz, 2H), 8.12 (dq, J = 2.1, 2.1 Hz, 2H). ¹⁹F NMR (MeOH-d4) $\delta \Box -77.55$ (s). ¹³C NMR (MeOH-d4) δ 73.7 (q, J = 27.5 Hz), 125.6 (q, J = 285.7 Hz), 131.6 (q, J = 2.7 Hz), 132.5 (q, J = 2.9 Hz), 133.3, 134.4, 137.6. IR (KBr) v 3548, 3356, 3109, 3083, 2979, 1800, 1666, 1563, 1482, 1343, 1189, 1048, 898, 780 cm⁻¹. HRMS (FAB–) Calcd for (M+) C₁₆H₈Br₂F₆O₂: 503.8795, Found 503.8838.

2,6-Diiodo-9,10-bis(trifluoromethyl)-9,10-dihydroanthracen-9,10-diol (2e)

F₃C OH F₃C OH F₃C OH Yield: 74% (white solid). M.P. 284.0 – 285.5 °C. ¹H NMR (MeOH-*d*4) δ 2.96 (s, 2H), 7.72 (dq, J = 8.4, 2.2 Hz, 2H), 7.91 (dd, J = 2.1, 8.7 Hz, 2H), 8.31 (dq, J = 2.1, 2.1 Hz, 2H). ¹⁹F NMR (MeOH-*d*4) $\delta \Box$ -79.56 (s). ¹³C NMR (MeOH-*d*4) δ 73.6 (q, J = 27.3 Hz), 95.9, 125.2 (q, J = 286.1 Hz), 131.4 (q, J = 2.5 Hz), 134.9, 137.3, 138.7 (q, J = 2.8 Hz), 139.2. IR (KBr) v 3514, 3097, 2982, 2880, 1825, 1658, 1557, 1478, 1389, 1280, 1046, 718 cm⁻¹.

Typical procedure for the preparation of 9,10-bis(trifluoromethyl)anthracene (3a)

A 30 mL two-necked round-bottomed flask equipped with a magnetic stirrer bar, a rubber septum, and an inlet tube for argon was charged with a 9,10-bis(trifluoromethyl)anthracen-9,10-diol (**2a**, 0.104 g, 0.3 mmol) and CBr₄ (0.298 g, 0.9 mmol) in CH₂Cl₂ (2.0 mL). To the solution was slowly added PPh₃ (0.367 g, 1.4 mmol) in CH₂Cl₂ (2.0 mL) via a syringe at 0 °C, followed by continuous stirring at room temperature for 15 h. After being stirred for 15 h, the whole was poured into saturated aqueous NH₄Cl solution (20 mL), followed by extraction with CH₂Cl₂ (20 mL, 3 times). The organic layers were dried overanhydrous Na₂SO₄, filetered and concentrated with a rotary evaporator. Column chromatography of the residue using hexane as an eluent yielded pure 9,10-bis(trifluoromethyl)anthracene (**3a**, 0.062 g, 66%) as a yellow powder.

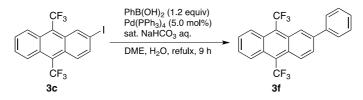
9,10-Bis(trifluoromethyl)anthracene (3a)

2-Bromo-9,10-bis(trifluoromethyl)anthracene (3b)

 $\begin{array}{c} \label{eq:GF3} & \mbox{Yield: 94\% (yellow powder).} & \mbox{M.P. 79} - 80 \ ^\circ\mbox{C}. \ ^1\mbox{H NMR (CDCl_3) } \delta \square 7.64 (dd, \\ J = 6.9, 3.3 \ \mbox{Hz}, 2\mbox{H}), 7.69 (d, J = 1.8 \ \mbox{Hz}, 1\mbox{H}), 8.38 (dd, J = 9.8, 2.0 \ \mbox{Hz}, 1\mbox{H}), 8.49 \\ & \mbox{(m, 2H)}, 8.69 (t, J = 1.7 \ \mbox{Hz}, 1\mbox{H}). \ ^{19}\mbox{F NMR (CDCl_3) } \delta - 49.82 (s, 3\mbox{F}), -49.98 (s, 3\mbox{F}). \ \mbox{IR (KBr) } v \ 3168, \ 3088, \ 3044, \ 2923, \ 1921, \ 1741, \ 1607, \ 1280, \ 1115, \ 957, \ 813, \ 702 \ \mbox{cm}^{-1}. \\ \mbox{Anal. Calcd for $C_{24}\mbox{H}_{12}\mbox{F}_6$: $C, 48.88; \mbox{H}, 1.79. \ \mbox{Found: $C, 48.48; \mbox{H}, 1.80.$} \end{array}$

2-Iodo-9,10-bis(trifluoromethyl)anthracene (3c)

8.49 (dd, J = 5.4, 2.1 Hz, 2H), 8.90 (s, 1H). ¹⁹F NMR (CDCl₃) δ –49.83 (s, 3F), –49.84 (s, 3F). ¹³C NMR (CDCl₃) δ 119.7, 123.4, 124.6 (q, J = 6.0 Hz), 124.6 (q, J = 5.8 Hz), 126.2 (q, J = 28.7Hz), 127.1, 127.5, 127.7, 129.1 (q, J = 234.9 Hz), 129.1 (q, J = 233.7 Hz), 129.3, 129.6, 130.0, 133.3(q, J = 6.2 Hz), 133.3(q, J = 6.4 Hz), 135.5. IR (KBr) v 3164, 3087, 3064, 3033, 1925, 1523, 1492, 1342, 1281, 1120, 1051, 955, 764 cm⁻¹. Anal. Calcd for C₁₆H₇F₆I: C, 43.66; H, 1.60. Found: C, 43.80; H, 1.58.

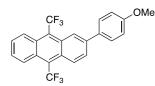

2,6-Dibromo-9,10-bis(trifluoromethyl)anthracene (3d)

Yield: 73% (yellow powder). M.P. 206 – 207 °C. ¹H NMR (CDCl₃) $\delta \square$ 7.69 (dd, J = 9.8, 1.7 Hz, 2H), 8.36 (dd, J = 9.6, 1.1 Hz, 2H), 8.66 (brs, 2H). ¹⁹F NMR (CDCl₃) $\delta -50.00$ (s). ¹³C NMR (CDCl₃) δ 122.9, 124.4 (q, J = 161.6Hz), 126.2 (q, J = 3.7 Hz), 126.7 (q, J = 4.9 Hz), 128.1, 129.8, 131.4. IR (KBr) v 3452, 3171, 3068, 2997, 1925, 1768, 1614, 1520, 1412, 1345, 1270, 868, 806, 775, 714 cm⁻¹. Anal. Calcd for C₁₆H₆Br₂F₆: C, 40.71; H, 1.28. Found: C, 40.70; H, 1.26.

2,6-Diiodo-9,10-bis(trifluoromethyl)anthracene (3e)

Yield: 84% (yellow powder). M.P. 234 – 235 °C. ¹H NMR (CDCl₃) $\delta \square$ 7.85 (dd, J = 9.8, 1.7 Hz, 2H), 8.02 (dd, J = 9.9, 1.5 Hz, 2H), 8.88 (brs, 2H). ¹⁹F NMR (CDCl₃) δ –49.90 (s). ¹³C NMR (CDCl₃) δ 124.8 (q, J = 283.6 Hz), 124.9, 125.8 (q, J = 6.0 Hz), 128.0, 130.1, 133.3 (q, J = 6.4 Hz), 136.2. IR (KBr) v 3442, 3166, 3153, 1929, 1774, 1601, 1515, 1210, 1124, 955, 806, 769 cm⁻¹. Anal. Calcd for C₁₆H₆F₆I₂: C, 33.95; H, 1.07. Found: C, 33.91; H, 1.00.

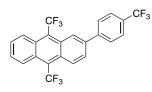
Typical procedure for Suzuki-Miyaura cross-coupling reaction of2-iodo-9,10-bis(trifluoromethyl)anthracene (3c) with aromatic boronic acid5


A 50 mL two-necked round-bottomed flask equipped with a magnetic stirrer bar, a rubber septum, and an inlet tube for argon was charged with a 2-iodo-9,10-bis(trifluoromethyl)anthracene (**3c**, 0.868 g, 1.97 mmol), Pd(PPh₃)₄ (0.161 g, 0.1 mmol) in DME (10 mL). After stirring at room temperature for 20 min, to the resulting solution was added aqueous saturated NaHCO3 solution

(6.0 mL), phenylboronic acid (0.268 g, 2.2 mmol), and the whole was refluxed for 9 h. After being stirred for 9 h, the resulting mixture was poured into H₂O (20 mL), followed by extraction with CH₂Cl₂ (20 mL, 3 times). The organic layers were washed with 1N NaOH aq. (20 mL) and dried overanhydrous Na₂SO₄, filetered and concentrated with a rotary evaporator. Column chromatography of the residue using hexane as an eluent vielded pure 2-phenyl-9,10-bis(trifluoromethyl)anthracene (**3f**, 0.568 g, 1.46 mmol, 74%) as a yellow powder.

2-Phenyl-9,10-bis(trifluoromethyl)anthracene (3f)

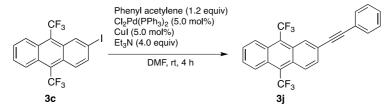
Yield: 74% (yellow powder). M.P. 105 – 106 °C. ¹H NMR (CDCl₃) δ 7.43 – 7.46 (m, 1H), 7.55 (dd, J = 9.5, 1.7 Hz, 1H), 7.62 (dd, J = 6.6, 3.6 Hz, 2H), 7.78 (dd, J = 8.4, 1.2 Hz, 2H), 7.90 (dd, J = 9.5, 1.7 Hz, 1H), 8.51 (m, 2H), 8.60 (dd, J = 9.6, 2.1 Hz, 1H), 8.69 (t, J = 2.0 Hz, 1H). ¹⁹F NMR (CDCl₃) δ –49.70 (s, 3F), -49.83 (s, 3F). ¹³C NMR (CDCl₃) δ 121.9 (q, J = 5.6 Hz), 124.5 (q, J = 6.0 Hz), 124.6 (q, J = 5.8 Hz), 125.2 (q, J = 5.6 Hz), 125.5 (q, J = 29.0 Hz), 125.6 (q, J = 28.8 Hz), 125.6 (q, J = 28.0 Hz), 125.7 (q, J = 276.0 Hz), 125.7 (q, J = 275.4 Hz), 127.0, 127.0, 127.2 (q, J = 1.2 Hz), 127.4, 128.3, 128.4, 128.4, 129.1, 129.6 (q, J = 1.6 Hz), 139.3, 139.3, 139.8, 139.9. IR (KBr) v 3447, 3065, 2957, 2852, 2352, 1920, 1631, 1581, 1493, 1290, 1186961, 884 cm⁻¹. Anal Calcd for C₂₂H₁₂F₆: C, 67.70; H, 3.10. Found: C, 67.83; H, 2.80.


2-(4-Methoxyphenyl)-9,10-bis(trifluoromethyl)anthracene (3g)

Yield: 80% (yellow powder). M.P. 118 – 119 °C. ¹H NMR (CDCl₃) δ 3.89 (s, 3H), 7.61 (m, 2H), 7.727 (q, *J* = 5.0 Hz, 1H), 7.728 (ABq, *J* = 8.7 Hz, 2H), 7.89 (dd, *J* = 9.6, 2.1 Hz, 1H), 8.50 (dquint., *J* = 7.5, 2.5 Hz, 2H), 8.57 (dqd, *J* = 9.6, 2.3, 0.6 Hz, 1H), 8.62 (quint., *J* = 2.0 Hz, 1H). ¹⁹F

NMR (CDCl₃) δ –49.82 (s, 3F), –49.88 (s, 3F). ¹³C NMR (CDCl₃) δ 55.3, 114.5, 120.7 (q, *J* = 5.6 Hz), 124.5 (q, *J* = 5.6 Hz), 124.6 (q, *J* = 5.6 Hz), 125.1 (q, *J* = 5.6 Hz), 125.2 (q, *J* = 26.3 Hz), 125.5 (q, *J* = 26.7 Hz), 125.6 (q, *J* = 275.8 Hz), 125.7 (q, *J* = 275.7 Hz), 126.9, 127.07, 127.10, 128.20, 128.22, 128.8, 128.9, 129.6, 129.7, 132.1, 138.7, 159.9. IR (KBr) v 3434, 3132, 2964, 2898, 2360, 1578, 1496, 1252, 1187, 959, 812 cm⁻¹. Anal. Calcd for C₂₃H₁₄F₆O: C, 65.72; H, 3.36. Found: C, 65.46; H, 3.10.

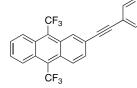
2-[(4-Trifluoromethyl)phenyl]-9,10-bis(trifluoromethyl)anthracene (3h)


Yield: 90% (yellow powder). M.P. 114 – 116.0 °C. ¹H NMR (CDCl₃) δ 7.65 (dd, J = 7.2, 3.3 Hz, 2H), 7.80 (d, J = 7.8 Hz, 2H), 7.80 (m, 3H), 8.53 (m, 2H), 8.64 (dqd, J = 9.4, 2.0, 0.4 Hz, 1H), 8.70 (quint., J = 2.1 Hz, 1H). ¹⁹F NMR (CDCl₃) δ –49.68 (s, 3F), –49.89 (s, 3F), –63.85 (s, 3F). ¹³C

NMR (CDCl₃) δ 124.1 (q, J = 270.0 Hz), 124.6 (q, J = 5.9 Hz), 124.7 (q, J = 5.9 Hz), 125.5 (q, J = 275.8 Hz), 125.6 (q, J = 275.8 Hz), 125.6 (q, J = 5.6 Hz), 126.0 (q, J = 4.4 Hz), 126.6, 127.4, 127.5, 127.7, 128.4, 128.5, 129.2, 129.3, 129.36, 129.4, 129.68, 129.71, 130.3 (q, J = 32.3 Hz), 137.7, 143.3. IR (KBr) v 3416, 3139, 2923, 2851, 2360, 11529, 1496, 1383, 1174, 1074, 961, 817 cm⁻¹. Anal. Calcd for C₂₃H₁₁F₉: C, 60.27; H, 2.42. Found: C, 60.10; H, 2.36.

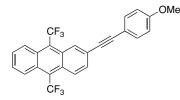
2-(2-Thienyl)-9,10-bis(trifluoromethyl)anthracene (3i)

Yield: Quant (yellow powder). M.P. 137 – 138 °C. ¹H NMR (CDCl₃) δ 7.18 (dd, J = 5.1, 3.6 Hz, 1H), 7.43 (dd, J = 5.1, 0.9 Hz, 1H), 7.56 (dd, J = 3.6, 0.9 Hz, 1H), 7.61 (dd, J = 4.1, 2.9 Hz, 1H), 7.61 (dd, J = 10.4, 0.8 Hz, 1H), 7.89 (dd, J = 9.6, 2.1 Hz, 1H), 8.52 (m, 3H), 8.69 (quint., J = 2.1 Hz, 1H). ¹⁹F NMR (CDCl₃) δ –49.87 (s, 3F), –49.92 (s, 3F). ¹³C NMR (CDCl₃) δ 119.7 (q, J = 5.8 Hz), 124.5 (q, J = 5.6 Hz), 124.7 (q, J = 5.6 Hz), 125.3 (q, J = 5.8 Hz), 125.5 (q, J = 276.2 Hz), 125.6 (q, J = 276.1 Hz), 125.7 (q, J =27.7 Hz), 126.0, 126.6, 127.0, 127.3, 127.4, 128.5, 128.97, 128.99, 128.46, 129.48, 129.8, 132.6, 143.1. IR (KBr) v 3155, 3048, 2924, 2849, 1742, 1616, 1517, 1474, 1285, 1192, 952, 763 cm⁻¹. Anal. Calcd for C₂₀H₁₀F₆S: C, 60.61; H, 2.54. Found: C, 60.22, 2.27.


TypicalprocedureforSonogashiracross-couplingof2-iodo-9,10-bis(trifluoromethyl)anthracene (3c) with phenyl acetylene⁶

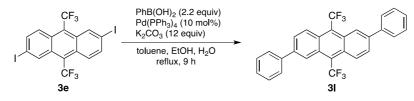
A 50 mL two-necked round-bottomed flask equipped with a magnetic stirrer bar, a rubber septum, and an inlet tube for argon was charged with a 2-iodo-9,10-bis(trifluoromethyl)anthracene (**3c**, 0.220 g, 0.50 mmol), $Cl_2Pd(PPh_3)_4$ (0.018 g, 0.025 mmol), phenyl acetylene (0.070 mL, 0.60 mmol), CuI (0.005 g, 0.0025 mmol), Et₃N (0.28 mL, 2.0 mmol) in DMF (3.0 mL), and the whole was stirred at room temperature for 4 h. After being stirred for 4 h, the resulting mixture was

poured into saturated NH₄Cl aq. (20 mL), followed by extraction with Et_2O (20 mL, 3 times). The organic layers were dried over anhydrous MgSO₄, filetered and concentrated with a rotary evaporator. Column chromatography of the residue using hexane as an eluent yielded pure 2-phenylethynyl-9,10-bis(trifluoromethyl)anthracene (**3j**, 0.134 g, 0.34 mmol, 65%) as a yellow powder.


2-Phenylethynyl-9,10-bis(trifluoromethyl)anthracene (3j)

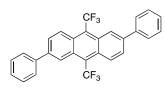
Yield: 65% (yellow powder). M.P. 110 – 112 °C. ¹H NMR (CDCl₃) δ 7.38 – 7.42 (m, 3H), 7.61 – 7.69 (m, 5H), 8.45 – 8.52 (m, 3H), 8.69 (t, J =2.1 Hz, 1H). ¹⁹F NMR (CDCl₃) δ –49.77 (s, 3F), –49.88 (s, 3F). ¹³C NMR (CDCl₃) δ 89.1, 92.4, 122.3, 122.4, 122.6, 124.7 (q, J = 5.7 Hz),

124.7 (q, J = 5.8 Hz), 125.4 (q, J = 275.6 Hz), 125.4 (q, J = 275.4 Hz), 127.3, 127.4, 127.7 (q, J = 5.7 Hz), 128.4, 128.4, 128.5 (q, J = 41.3 Hz), 128.5 (q, J = 41.9 Hz), 128.8, 129.1, 129.7, 129.8, 130.90, 130.92, 131.4, 132.5. IR (KBr) v 3432, 3142, 2925, 2364, 1960, 1615, 1434, 1288, 1027, 921, 852 cm⁻¹. Anal. Calcd for C₂₄H₁₂F₆: C, 69.57; H, 2.92. Found: C, 69.48; H, 2.57.


2-(4-methoxyphenyl)ethynyl-9,10-bis(trifluoromethyl)anthracene (3k)

Yield: 80% (yellow powder). M.P. 123 – 124 °C. ¹H NMR (CDCl₃) δ 3.86 (s, 3H), 6.93 (m, 2H), 7.61 (m, 5H), 8.48 (m, 3H), 8.65 (t, J =1.8 Hz, 1H). ¹⁹F NMR (CDCl₃) δ –49.87 (s, 3F), –49.93 (s, 3F). ¹³C NMR (CDCl₃) δ 55.2, 88.1, 92.6, 114.1, 114.6, 122.7, 124.5 (q, J =

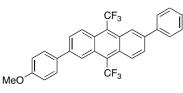
5.4 Hz), 124.6 (q, J = 5.2 Hz), 125.0 (q, J = 28.4 Hz), 125.4 (q, J = 275.8 Hz), 125.7 (q, J = 28.6 Hz), 127.2 (q, J = 5.6 Hz), 127.4, 127.42 (q, J = 278.1 Hz), 128.09, 128.11, 128.80, 128.82, 129.29, 129.3, 129.4, 129.61, 129.63, 133.4, 160.0. IR (KBr) v 3124, 3096, 2974, 2217, 1921, 1556, 1435, 1320, 914, 784 cm⁻¹. Anal. Calcd for C₂₅H₁₄F₆O: C, 67.57; H, 3.18. Found: C, 67.50; H, 3.35.


TypicalprocedureforSuzuki-Miyauracross-couplingof2,6-diiodo-9,10-bis(trifluoromethyl)anthracene (3e) with phenylboronic acid

A 50 mL two-necked round-bottomed flask equipped with a magnetic stirrer bar, a rubber

septum, and inlet tube for charged with an argon was a 2,6-diiodo-9,10-bis(trifluoromethyl)anthracene (3e, 0.045 g, 0.08 mmol), Pd(PPh₃)₄ (0.012 g, 0.010 mmol), phenylboronic acid (0.022 g, 0.18 mmol), K₂CO₃ (0.163 g, 1.2 mmol) in H₂O (2.0 mL) and EtOH (1.0 mL) and toluene (4.0 mL), and the whole was refluxed for 12 h. After being stirred for 12 h, the resulting mixture was poured into H₂O (20 mL), followed by extraction with AcOEt (20 The organic layers were washed with 1N NaOH aq. (20 mL) and dried mL, 3 times). overanhydrous Na₂SO₄, filetered and concentrated with a rotary evaporator. Column chromatography of the residue using hexane an eluent as vielded pure 2,6-diphenyl-9,10-bis(trifluoromethyl)anthracene (31, 0.030 g, 0.064 mmol, 81%) as a yellow powder.

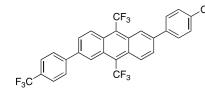
2,6-Diphenyl-9,10-bis(trifluoromethyl)anthracene (31)



Yield: 81% (yellow powder). M.P. 211 – 213 °C. ¹H NMR (CDCl₃) δ 7.48 (dd, J = 7.4, 2.3 Hz, 2H), 7.56 (dt, J = 7.4, 2.3 Hz, 4H), 7.79 (dd, J = 7.2, 1.8 Hz, 4H), 7.93 (dt, J = 9.7, 1.8 Hz, 2H), 8.61 (d, J = 9.7 Hz, 2H), 8.70 (d, J = 9.6 Hz, 2H). ¹⁹F NMR (CDCl₃) δ –49.75 (s). ¹³C NMR

 $(CDCl_3) \delta 122.0 (q, J = 2.5 Hz), 125.5 (q, J = 28.8 Hz), 125.7 (q, J = 269.9 Hz), 128.3, 128.8, 129.1, 129.5, 139.2, 139.8. IR (KBr) v 3426, 3080, 2361, 1632, 1468, 1321, 1279, 1141, 962, 880 cm⁻¹. Anal. Calcd for C₂₈H₁₆F₆: C, 72.10; H, 3.46. Found: C, 72.25; H, 3.18.$

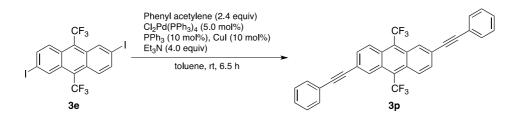
2,6-Bis(4-methoxyphenyl)-9,10-bis(trifluoromethyl)anthracene (3m)


OMe

Yield: 66% (yellow powder). M.P. 226 – 228 °C. ¹H NMR (CDCl₃) δ 3.90 (s, 6H), 7.08 (ABq, J = 8.7 Hz, 4H), 7.73 (ABq, J = 8.7 Hz, 4H), 7.89 (d, J = 9.6 Hz, 2H), 8.57 (d, J = 9.6 Hz, 2H), 8.62 (s, 2H). ¹⁹F NMR (CDCl₃) δ –49.86 (s). ¹³C NMR

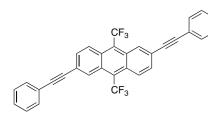
(CDCl₃) δ 55.4, 114.6, 121.0 (q, *J* = 6.2 Hz), 125.1 (q, *J* = 5.8 Hz), 127.2, 128.6, 132.3, 134.8, 138.6, 141.7, 159.9. IR (KBr) v 3007, 2960, 2853, 2363, 1918, 1608, 1468, 1248, 1180, 963, 876 cm⁻¹. HRMS (FAB) Calcd for (M+) C₃₀H₂₀F₆O₂: 526.1367, Found 526.1336.

2,6-Bis[4-(trifluoromethyl)phenyl]-9,10-bis(trifluoromethyl)anthracene (3n)


Yield: 90% (yellow powder). M.P. 217 – 218 °C. ¹H NMR (CDCl₃) δ 7.81 (ABq, J = 8.1 Hz, 2H), 7.89 (ABq, J = 8.1 Hz,

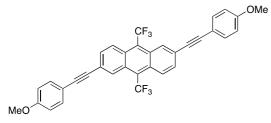
2H), 7.92 (dd, J = 9.1, 1.5 Hz, 2H), 8.68 (d, J = 8.4 Hz, 2H), 8.72 (s, 2H). ¹⁹F NMR (CDCl₃) δ -49.70 (s, 6F), -63.86 (s, 6F). ¹³C NMR (CDCl₃) δ 122.3, 122.8 (q, J = 6.2 Hz), 125.5 (q, J = 275.6 Hz), 125.7 (q, J = 6.0 Hz), 126.1 (q, J = 3.7 Hz), 127.1, 129.1, 129.5, 130.4 (q, J = 32.3 Hz), 138.1, 143.3. IR (KBr) v 3428, 3047, 2934, 2850, 1928, 1617, 1209, 1073, 847 cm⁻¹. Anal. Calcd for C₃₀H₁₄F₁₂: C, 59.81; H, 2.34. Found: C, 59.51; H, 2.14.

2,6-Dithienyl-9,10-bis(trifluoromethyl)anthracene (30)


Yield: 82% (yellow powder). M.P. 241.8 – 242.3 °C. 1H NMR (CDCl₃) δ 7.19 (dd, J = 5.1, 3.6 Hz, 2H), 7.43 (dd, J = 8.1, 0.9 Hz, 2H), 7.57 (dd, J = 3.6, 0.9 Hz, 2H), 7.90 (dd, J = 9.3, 1.8 Hz, 2H), 8.52 (dd, J =9.6, 1.2 Hz, 2H), 8.68 (s, 2H). ¹⁹F NMR (CDCl₃) δ -49.93 (s, 6F). ¹³C NMR (CDCl₃) δ 119.9 (q, J = 5.8 Hz), 124.9, 125.3 (q, J = 3.3 Hz), 125.6 (q, J = 280.5 Hz), 126.3, 126.6, 128.5, 129.2 (q, J =20.3 Hz), 132.6, 143.2. IR (KBr) v 3141, 3094, 2329, 1921, 1810, 1735, 1481, 1356, 1281, 1109, 948, 809, 777 cm⁻¹. HRMS (APCI+) Calcd for (M+H) C₂₄H₁₃F₆S₂: 479.0363, Found 479.0352.

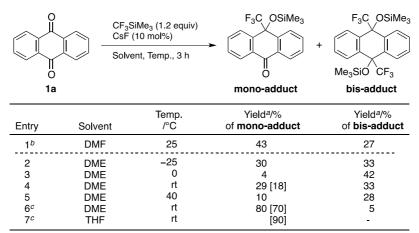
TypicalprocedureforSonogashiracross-couplingof2,6-diiodo-9,10-bis(trifluoromethyl)anthracene (3e) with phenyl acetylene

A 50 mL two-necked round-bottomed flask equipped with a magnetic stirrer bar, a rubber septum, and an inlet tube for argon was charged with а 2,6-diiodo-9,10-bis(trifluoromethyl)anthracene (**3e**, 0.028 g, 0.05 mmol), $Cl_2Pd(PPh_3)_4$ (0.002 g, 0.003 mmol), phenyl acetylene (0.122 g, 0.12 mmol), CuI (0.001 g, 0.005 mmol), PPh3 (0.001 g, 0.004 mmol), and Et₃N (0.28 mL, 2.0 mmol) in toluene (0.3 mL), and the whole was stirred at room temperature for 6.5 h. After being stirred for 4 h, the resulting mixture was poured into saturated NH₄Cl aq. (20 mL), followed by extraction with AcOEt (20 mL, 3 times). The organic layers were dried over anhydrous MgSO₄, filetered and concentrated with a rotary evaporator. Column the residue chromatography of using hexane eluent vielded pure 2.6as an bis(phenylethynyl)-9,10-bis(trifluoromethyl)anthracene (**3p**, 0.022 g, 0.043 mmol, 86%) as a yellow powder.


2,6- Bis(phenylethynyl)-9,10-bis(trifluoromethyl)anthracene (3p)

Yield: 86% (yellow powder). M.P. 215 – 216 °C. ¹H NMR (CDCl₃) δ 7.41 (t, *J* = 3.2 Hz, 6H), 7.64 (q, *J* = 3.2 Hz, 4H), 7.69 (dd, *J* = 9.3, 0.9 Hz, 2H), 8.48 (d, *J* = 8.7 Hz, 2H). ¹⁹F NMR (CDCl₃) δ –46.20 (s, 6F). ¹³C NMR (CDCl₃) δ 89.1, 92.7, 122.5, 122.7, 124.8 (q, *J* = 5.8 Hz), 125.1, 125.2 (q, *J* = 304.6 Hz), 125.3

(q, J = 29.0 Hz), 127.7 (q, J = 6.0 Hz), 128.5, 128.7, 128.9, 129.0, 129.7, 131.9. IR (KBr) v 3437, 3148, 2995, 2210, 1625, 1496, 1326, 1285, 1172, 994, 881, 720 cm⁻¹. Anal. Calcd for C₃₂H₁₆F₆: C, 74.71; H, 3.13. Found: C, 74.67; H, 2.96.

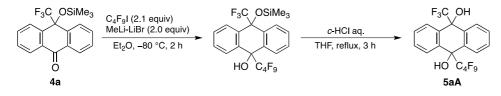

2,6-Bis[(4-methoxyphenyl)ethynyl]-9,10-bis(trifluoromethyl)anthracene (3q)

Yield: 57% (reddish crystal). M.P. 215 – 216 °C. ¹H NMR (CDCl₃) δ 3.86 (s, 6H), 6.93 (ABq, J = 8.7 Hz, 4H), 7.57 (ABq, J = 8.7 Hz, 4H), 7.67 (m, 2H), 8.45 (m, 2H), 8.63 (m, 2H). ¹⁹F NMR (CDCl₃) δ -49.00 (s, 6F). IR (KBr) v 3122, 3076, 2962, 1626, 1514, 1325, 1252,

1171, 1010, 925, 840, 796 cm⁻¹. HRMS (APCI–) Calcd for (M+) $C_{34}H_{20}F_6O_2$: 574.1367, Found 574.1385. Data ¹³C NMR for this compound **3p** was not obtained due to low solubility in any deuterated solvents.

Optimization of the reaction conditions for the preparation of 9-trifluoromethyl-9-trimethylsiloxy- anthracen-10-one (4a)

^a Determined by ¹⁹F NMR. Values in bracket are of isolated yields. ^b Reaction of **1a** with 1.1 equiv of CF₃SiMe₃ in the presence of 0.2 equiv of K₂CO₃ in DMF at room temperature for 4 h was performed according to the reported procedure, see: Ref.[4a]. ^c To the mixture of **1a** and CsF in the solvent was **added slowly the diluted solution** of CF₃SiMe₃ in the solvent.


Typical procedure for the preparation of 9-(trifluoromethyl)-9-(trimethylsiloxy)anthracen-10-one (4a) under the optimized reaction conditions (entry 7)

A 300 mL three-necked round-bottomed flask equipped with a magnetic stirrer bar, a rubber septum, 30 mL of dropping funnel, and an inlet tube for argon was charged with 9,10-anthraquinone (1a, 4.164 g, 20 mmol) and CsF (0.304 g, 2.0 mmol) in THF (150 mL). To the whole was added slowly the diluted solution of CF₃SiMe₃ (3.55 mL, 24 mmol) in THF (25 mL), followed by stirring at room temperature for 3 h. The resultant was poured into saturated NH₄Cl aq. (30 mL), followed by extraction with AcOEt (30 mL, 3 times). The organic layers were dried over anhydrous Na₂SO₄, filetered and concentrated with a rotary evaporator. Column chromatography of the (2/1)residue using hexane/CH₂Cl₂ as an eluent vielded pure 9-(trifluoromethyl)-9-(trimethylsiloxy)anthracen-10-one (4a, 6.311 g, 18.0 mmol, 90%) as a white powder.

9-(Trifluoromethyl)-9-(trimethylsiloxy)anthrcen-10-one (4a)

F₃C OSIMe₃ Yield: 90% (white solid). M.P. 84 – 86 °C. ¹H NMR (CDCl₃) δ –0.09 (s, 9H), 7.63 (td, J = 7.2, 1.2 Hz, 2H), 7.74 (td, J = 7.2, 1.2 Hz, 2H), 7.99 (t, J = 1.5 Hz, 1H), 8.02 (t, J = 1.5 Hz, 1H), 8.32 (d, J = 1.2 Hz, 1H), 8.35 (d, J = 1.2 Hz, 1H). ¹⁹F NMR (CDCl₃) δ –80.66 (s, 3F). ¹³C NMR (CDCl₃) δ 1.7, 74.6 (q, J = 29.7 Hz), 123.8 (q, J = 286.5 Hz), 127.4, 129.0 (q, J = 1.8 Hz), 129.9, 131.4, 133.0, 139.0, 182.6. IR (KBr) v 006, 2971, 2905, 1668, 1599, 1457, 1253, 1082, 956, 818, 712, 679 cm⁻¹. HRMS (APCI+) Calcd for (M+H) C₁₈H₁₈F₃O₂Si: 351.1028, Found 351.1008.

Typicalprocedureforthepreparationof9-(nonafluorobutyl)-10-(trifluoromethyl)anthracene-9,10-diol (5aA)

A 30 mL three-necked round-bottomed flask equipped with a magnetic stirrer bar, a rubber septum, 10 mL of dropping funnel and an inlet tube for argon was charged with a 9-trifluoromethyl-9-trimethylsiloxyanthracen-10-one (**4a**, 0.350 g, 1.0 mmol) and nonafluorobutyl iodide (0.36 mL, 2.1 mmol) in Et₂O (10 mL). To the solution was added MeLi-LiBr in Et₂O (1.5 M, 1.33 mL, 2.0 mmol) *via* a syringe at -80 °C, followed by continuous stirring at the same temperature. After being stirred for 2 h, the whole was poured into the aqueous solution of sat. NH₄Cl (10 mL), followed by extraction with Et₂O (10 mL, 3 times). The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated with a rotary evaporator. Column chromatography of the residue using hexane/CH₂Cl₂ (2/1) as an eluent yielded pure 9-(nonafluorobutyl)-10-(trifluoromethyl)-10-(trimethylsiloxy)anthracen-9-ol (0.449 g, 0.79 mmol, 79%) as a white solid.

9-(Nonafluorobutyl)-10-(trifluoromethyl)-10-(trimethylsiloxy)anthracen-9-ol

F₃C, OSIMe₃ Yield: 79% (white solid). M.P. 99 – 101 °C. ¹H NMR (CDCl₃) δ 0.03 (s, 9H), 2.98 (s, 1H), 7.50 – 7.60 (m, 4H), 7.91 – 7.98 (m, 2H), 8.00 – 8.09 (m, 2H). ¹⁹F NMR (CDCl₃) δ –81.55 (s, 3F), -82.21 (t, *J* = 9.0 Hz, 3F), -116.49 (m 2F), -120.15 (m, 2F), -127.28 (m, 2F). ¹³C NMR (CDCl₃) δ 1.8, 74.2 (tt, *J* = 19.8, 1.8 Hz), 76.0 (q, *J* = 27.3 Hz), 124.1 (q, *J* = 289.0 Hz), 128.6 (tt, *J* = 5.6, 1.8 Hz), 129.0, 129.5, 129.6, 132.8, 133.4. IR (KBr) v 3589, 3563, 2963, 1449, 1357, 1235, 1170, 940, 878, 763 cm⁻¹. HRMS (FAB–) Calcd for (M+) C₂₂H₁₇F₁₂O₂Si: 569.0806, Found 569.0824.

9-(Tridecafluorohexyl)-10-(trifluoromethyl)-10-(trimethylsiloxy)anthracen-9-ol

F₃C, OSIMe₃ Yield: 68% (white solid). M.P. 58 – 60 °C. ¹H NMR (CDCl₃) δ 0.04 (s, 9H), 3.01 (s, 1H), 7.50 – 7.60 (m, 4H), 7.91 – 8.00 (m, 2H), 8.03 – 8.09 (m, 2H). ¹⁹F NMR (CDCl₃) δ –81.62 (s, 3F), –82.17 (t, *J* = 9.0 Hz, 3F), –116.45 (m, 2F), –119.28 (m, 2F), –123.11 (brs, 2F), –124.20 (brs, 2F), –127.449 (m, 2F). ¹³C NMR (CDCl₃) δ 2.3, 74.6 (tt, *J* = 19.8, 1.9 Hz), 76.4 (q, *J* = 27.9 Hz), 124.5 (q, *J* = 289.0 Hz), 129.0 (tt, *J* = 5.6, 1.2 Hz), 129.4, 129.9, 130.0, 133.2, 133.8. IR (KBr) v 3585, 3445, 2966, 1237, 1198, 1151, 1032, 937, 848, 761 cm⁻¹. HRMS (APCI–) Calcd for (M+) C₂₄H₁₈F₁₆O₂Si: 670.0821, Found 670.0804.

9-(Heptadecafluorooctyl)-10-(trifluoromethyl)-10-(trimethylsiloxy)anthracen-9-ol

F₃C, OSiMe₃ Yield: 70% (white solid). M.P. 84 – 86 °C. ¹H NMR (CDCl₃) δ 0.03 (s, 9H), 2.98 (s, 1H), 7.50 – 7.59 (m, 4H), 7.91 – 7.97 (m, 2H), 8.03 – 8.09 (m, 2H). ¹⁹F NMR (CDCl₃) δ –81.59 (s, 3F), –82.07 (t, *J* = 9.0 Hz, 3F), –116.40 (m, 2F), –119.18 (brs, 2F), –122.90 (brs, 2F), –123.22 (brs, 4F), –124.08 (brs, 2F), –127.44 (m, 2F). ¹³C NMR (CDCl₃) δ 1.8, 74.3 (tt, *J* = 19.9, 2.4 Hz), 76.0 (q, *J* = 27.9 Hz), 124.2 (q, *J* = 289.0 Hz), 128.6 (t, *J* = 5.6 Hz), 128.9, 129.5, 129.6, 132.8, 133.5. IR (KBr) v 3586, 3078, 2971, 1371, 1235, 1180, 1155, 1035, 908, 877, 763 cm⁻¹. HRMS (APCI–) Calcd for (M+) C₂₆H₁₈F₂₀O₂Si: 770.0757, Found 770.0758.

9-(Henicosafluorodecyl)-10-(trifluoromethyl)-10-(trimethylsiloxy)anthracen-9-ol

F₃C, OSIMe₃ Yield: 53% (white solid). M.P. 107 – 109 °C. ¹H NMR (CDCl₃) δ 0.04 (s, 9H), 3.01 (s, 1H), 7.50 – 7.59 (m, 4H), 7.92 – 7.97 (m, 2H), 8.03 – 8.09 (m, 2H). ¹⁹F NMR (CDCl₃) δ –81.60 (s, 3F), –82.05 (t, J = 9.3 Hz, 3F), –116.41 (brs, 2F), –119.20 (brs, 2F), –123.13 (brs, 10F), –124.04 (brs, 2F), –127.42 (brs, 2F). ¹³C NMR (CDCl₃) δ 2.1, 74.6 (tt, J = 19.8, 1.9 Hz), 76.4 (q, J = 27.9 Hz), 124.5 (q, J = 289.0 Hz), 129.0 (t, J = 5.6 Hz), 129.4, 129.9, 130.0, 133.2, 133.8. IR (KBr) v 3585, 3076, 2973, 1339, 1224, 1173, 1160, 1037, 940, 879, 763 cm⁻¹. HRMS (FAB–) Calcd for (M+) C₂₈H₁₈F₂₄O₂Si: 870.0693, Found 870.0744.

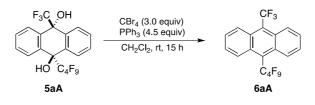
The silyl ether obtained (0.506 g, 0.89 mmol) was mixed with concentrated hydrochloric acid (0.5 mL, 6.0 mmol) in THF (5.0 mL) and the whole was stirred at reflux temperature for 3 h. The reaction mixture was poured into aqueous saturated NH₄Cl solution (10 mL), followed by extraction with AcOEt (10 mL, 3 times). The organic layers were dried over anhydrous Na₂SO₄, filtered and concentrated with a rotary evaporator. Column chromatography of the residue using hexane/CH₂Cl₂ (1/2) as an eluent yielded pure 9-nonafluorobutyl-10-trifluoromethylanthracene-9,10-diol (**5aA**, 0.351 g, 0.71 mmol, 79%) as a white solid.

9-(Nonafluorobutyl)-10-(trifluoromethyl)anthracene-9,10-diol (5aA)

F₃C, OH HO C_4F_9 Yield: 79% (white solid). M.P. 118 – 120 °C. ¹H NMR (CDCl₃) δ 2.88 (s, 1H), 3.15 (d, J = 1.2 Hz, 1H), 7.55 – 7.63 (m, 4H), 8.00 – 8.08 (m, 4H). ¹⁹F NMR (CDCl₃) δ –79.19 (s, 3F), -82.19 (t, J = 9.0 Hz, 3F), -119.32 (m, 2F), -121.64 (m, 2F), -127.47 (m, 2F). ¹³C NMR (CDCl₃) δ 73.3 (q, J = 27.9 Hz), 73.7 (tt, J = 18.6, 2.5 Hz), 124.0 (q, J = 287.8 Hz), 128.3 (q, J = 3.1 Hz), 128.4 (t, J = 5.6 Hz), 129.8, 129.9, 132.6, 132.8. IR (KBr) v 3610, 3481, 3083, 1450, 1363, 1202, 1185, 1135, 1026, 804, 767 cm⁻¹. HRMS (FAB–) Calcd for (M–H) C₁₉H₉F₁₂O₂: 497.0411, Found 497.0401.

9-(Tridecafluorohexyl)-10-(trifluoromethyl)anthracen-9,10-diol (5aB)

F₃C, OH HZ, 1H), 3.16 (dd, J = 3.9, 1.2 Hz, 1H), 7.58 – 7.63 (m, 4H), 8.01 – 8.07 (m, 4H). HO C₆F₁₃ ¹⁹F NMR (CDCl₃) δ –79.17 (s, 3F), -82.17 (t, J = 9.0 Hz, 3F), -119.15 (m, 2F), -120.06 (m, 2F), -123.28 (brs, 2F), -124.15 (brs, 2F), -127.56 (m, 2F). ¹³C NMR (CDCl₃) δ 73.2 (q, J = 27.9 Hz), 73.7 (tt, J = 19.2, 1.8 Hz), 124.0 (q, J = 287.2 Hz), 128.3 (q, J = 2.5 Hz), 128.4 (t, J = 5.6 Hz), 129.6, 129.8, 132.7, 132.9. IR (KBr) v 3489, 3228, 1453, 1360, 1244, 1182, 1025, 924, 768 cm⁻¹. HRMS (FAB–) Calcd for (M–H) C₂₁H₉F₁₆O₂: 597.0347, Found 597.0385.


9-(Heptadecafluorooctyl)-10-(trifluoromethyl)anthracen-9,10-diol (5aC)

F₃C₀^{-OH} Yield: 82% (white solid). M.P. 117 – 119 °C. ¹H NMR (CDCl₃) δ 2.87 (s, 1H), 3.15 (d, J = 1.2 Hz, 1H), 7.54 – 7.63 (m, 4H), 8.00 – 8.08 (m, 4H). ¹⁹F NMR (CDCl₃) δ –79.17 (s, 3F), –82.09 (t, J = 9.0 Hz, 3F), –119.12 (m, 2F), –120.58 (m, 2F), –123.10 (m, 4F), –123.34 (m, 2F), –124.13 (brs, 2F), –127.47 (m, 2F). ¹³C NMR (CDCl₃) δ 73.2 (q, J = 27.9 Hz), 73.9 (tt, J = 18.6 1.8 Hz), 124.0 (q, J = 287.8 Hz), 128.3 (q, J = 3.1 Hz), 128.4 (t, J = 5.6 Hz), 129.7, 129.8, 132.7, 132.8. IR (KBr) v 3596, 3440, 3086, 1450, 1368, 1211, 1151, 1019, 919, 766 cm⁻¹. HRMS (FAB–) Calcd for (M+) C₂₃H₁₀F₂₀O₂: 698.0361, Found 698.0434.

9-(Henicosafluorodecyl)-10-(trifluoromethyl)anthracen-9,10-diol (5aD)

F₃C, OH Yield: 80% (white solid). M.P. 132 – 134 °C. ¹H NMR (CDCl₃) δ 2.86 (s, 1H), 3.14 (d, J = 0.6 Hz, 1H), 7.55 – 7.64 (m, 4H), 8.01 – 8.08 (m, 4H). ¹⁹F NMR HO C₁₀F₂₁ (CDCl₃) δ –79.17 (s, 3F), -82.05 (t, J = 9.3 Hz, 3F), -119.11 (brs, 2F), -120.57 (brs, 2F), -123.14 (brs, 10F), -124.06 (brs, 2F), -127.45 (brs, 2F). ¹³C NMR (CDCl₃) δ 73.2 (q, J = 27.9 Hz), 73.7 (tt, J = 14.3, 1.8 Hz), 124.0 (q, J = 287.2 Hz), 128.3 (q, J = 3.1 Hz), 128.4 (t, J = 5.6Hz), 129.7, 129.8, 132.6, 132.8. IR (KBr) v 3585, 3077, 2910, 1450, 1338, 1222, 1175, 1037, 939, 879, 763 cm⁻¹. HRMS (APCI–) Calcd for (M–H) $C_{25}H_9F_{24}O_2$: 797.0219, Found 797.0199.

Typical procedure for the preparation of 9-nonafluorobutyl-10-trifluoromethylanthracene (6aA)

A 30 mL two-necked round-bottomed flask equipped with a magnetic stirrer bar, a rubber inlet tube for charged with septum, and an argon was a 9-nonafluorobutyl-10-trifluoromethylanthracen-9,10-diol (5aA, 0.232 g, 0.47 mmol) and CBr₄ (0.468 g, 1.4 mmol) in CH₂Cl₂ (5.0 mL). To the solution was slowly added PPh₃ (0.551 g, 2.1 mmol) in one portion at 0 °C, followed by continuous stirring at room temperature for 15 h. After being stirred for 15 h, the whole was poured into saturated aqueous NH₄Cl solution (10 mL), followed by extraction with CH_2Cl_2 (5.0 mL, 3 times). The organic layers were dried overanhydrous Na₂SO₄, filetered and concentrated with a rotary evaporator. Column of the residue chromatography using hexane as an eluent vielded pure 9-nonafluorobutyl-10-trifluoromethylanthracene (6aA, 0.205 g, 0.44 mmol, 93%) as a yellow powder.

9-(Nonafluorobutyl)-10-(trifluoromethyl)anthracene (6aA)

Yield: 93% (yellow powder). M.P. 89 – 91 °C. ¹H NMR (CDCl₃) δ 7.57 – 7.65 (m, 4H), 8.35 – 8.45 (m, 2H), 8.50 – 8.55 (m, 4H). ¹⁹F NMR (CDCl₃) δ –49.62 (s, 3F), -81.87 (t, *J* = 9.0 Hz, 3F), -93.04 (t, *J* = 16.1 Hz, 2F), -119.39 (q, *J* = 11.6 Hz, 2F), -126.86 (m, 2F). ¹³C NMR (CDCl₃) δ 124.8 (q, *J* = 6.3 Hz), 125.4 (tt, *J* = 9.9, 4.3 Hz), 125.6 (q, *J* = 277.9 Hz), 126.4, 126.9 (q, *J* = 1.2 Hz), 127.2 (t, *J* = 2.3 Hz), 129.4, 131.0 (t, *J* = 2.5 Hz). IR (KBr) v 3155, 3100, 3052, 1350, 1290, 1238, 1134, 1032, 932, 829, 765 cm⁻¹. HRMS (FAB–) Calcd for (M+) C₁₉H₈F₁₂: 464.0434, Found 464.0402.

9-(Tridecafluorohexyl)-10-(trifluoromethyl)anthracene (6aB)

 $\underbrace{\mathsf{CF}_3}_{\mathsf{C}_6\mathsf{F}_{13}} \quad \begin{array}{l} \text{Yield: 64\% (yellow powder).} \quad \text{M.P. 101} - 103 \ ^\circ\text{C}. \quad {}^1\text{H NMR (CDCl_3)} \ \delta \ 7.57 - 7.65 \\ (m, 4\text{H}), \ 8.36 - 8.46 \ (m, 2\text{H}), \ 8.46 - 8.56 \ (m, 4\text{H}). \quad {}^{19}\text{F NMR (CDCl_3)} \ \delta \ -49.64 \ (s, 100 \ \text{C}) \ \delta \ -49.$

3F), -81.94 (t, J = 9.0 Hz, 3F), -92.92 (t, J = 15.8 Hz, 2F), -118.52 (m, 2F), -122.76 (m, 2F), -123.74 (m, 2F), -127.22 (m, 2F). ¹³C NMR (CDCl₃) δ 124.7 (q, J = 5.6 Hz), 125.4 (tt, J = 9.3, 4.4 Hz), 125.5 (q, J = 277.3 Hz), 125.8, 126.4, 126.8, 127.2, 129.4, 131.0. IR (KBr) v 3165, 3048, 2927, 1364, 1243, 1223, 1146, 1115, 1063, 937, 774 cm⁻¹. HRMS (FAB–) Calcd for (M+) C₂₁H₈F₁₆: 564.0370, Found 564.0394.

9-(Heptadecafluorooctyl)-10-(trifluoromethyl)anthracene (6aC)

Yield: 74% (yellow powder). M.P. 114 – 116 °C. ¹H NMR (CDCl₃) δ 7.55 – 7.65 (m, 4H), 8.32 – 8.45 (m, 2H), 8.46 – 8.57 (m, 2H). ¹⁹F NMR (CDCl₃) δ –49.65 (s, 3F), -81.97 (t, J = 9.0 Hz, 3F), -92.91 (t, J = 16.1 Hz, 2F), -118.46 (m, 2F), -122.52 to -123.04 (m, 6F), -123.88 (brs, 2F), -127.33 (m, 2F). ¹³C NMR (CDCl₃) δ 124.7 (q, J = 8.0 Hz), 125.4 (tt, J = 9.4, 5.0 Hz), 125.5 (q, J = 277.9 Hz), 125.8, 126.3, 126.8, 127.2, 129.3, 131.0. IR (KBr) v 3156, 3098, 3051, 1446, 1368, 1241, 1148, 990, 766 cm⁻¹. HRMS (FAB–) Calcd for (M+) C₂₃H₈F₂₀: 664.0307, Found 664.0336.

9-(Henicosafluorodecyl)-10-(trifluoromethyl)anthracene (6aD)

Yield: 87% (yellow powder). M.P. 115 – 117 °C. ¹H NMR (CDCl₃) δ 7.57 – 7.65 (m, 4H), 8.35 – 8.45 (m, 2H), 8.48 – 8.55 (m, 2H). ¹⁹F NMR (CDCl₃) δ –49.65 (s, 3F), –81.98 (t, J = 9.0 Hz, 3F), –92.91 (t, J = 15.8 Hz, 2F), –118.46 (m, 2F), –122.25 to –123.22 (m, 10F), –123.94 (m, 2F), –127.34 (m, 2F). ¹³C NMR (CDCl₃) δ 124.7 (q, J = 5.6 Hz), 125.4 (tt, J = 10.0, 4.4 Hz), 125.5 (q, J = 276.7 Hz), 125.8, 126.4, 126.8, 127.2, 129.3, 130.9. IR (KBr) v 3098, 3075, 3048, 1340, 1215, 1153, 1115, 917, 841, 776 cm⁻¹. HRMS (FAB–) Calcd for (M+) C₂₅H₈F₂₄: 764.0243, Found 764.0210.

¹ Coleman, R. S.; Mortensen, M. A. Tetrahedron Lett. 2003, 44, 1215-1219.

² Ghosh, T.; Hart, H. J. Org. Chem. **1987**, *53*, 3555-3558.

³ Stone, M. T.; Anderson, H. L. *Chem. Commun.* **2007**, *23*, 2387-2389.

⁴ (a) Stahly, G. P.; Bell, D. R. *J. Org. Chem.* **1989**, *54*, 2873-2877; (b) Singh, R. P.; Shreeve, J. M. *J. Fluorine Chem.* **2012**, *133*, 20-26.

⁵ Kim, T.-Y.; Kumar, S. J. Org. Chem. 2000, 65, 3883-3884.

⁶ Toyota, M.; Komori, C.; Ihara, M. J. Org. Chem. **2000**, 65, 7110-7113.