Depolymerization of cellulosic feedstocks using magnetically separable functionalized graphene oxide

Deepak Verma, Rashmi Tiwari and Anil Kumar Sinha^a

^aCSIR-Indian Institute of Petroleum, Mohkampur, 248005, INDIA. Fax: +91-135-2660202; Tel: 91-

135-2525842; E-mail: asinha@iip.res.in

Supporting Information

Estimation of activation energy

Activation energy of the reaction was calculated using Arrhenius equation. Half-life time $(t_{1/2})$ at different temperatures was recorded for calculate activation energy.

Where k is the reaction rate coefficient, A is the frequency factor for the reaction, R is the universal gas constant (8.314 J/K/mol) and T is the temperature (in kelvin).

T (K)	1/T	k (h ⁻¹)	lnk
348	0.002874	0.060	-2.81341
373	0.002681	0.079	-2.53831

The activation energy was found algebraically by substituting two rate constants (k_1, k_2) and the two corresponding reaction temperatures (T_1, T_2) into the two-point form of the Arrhenius Equation (2).

$$E_{a} = \frac{R T_{1} T_{2}}{(T_{1} - T_{2})} \ln \frac{k_{1}}{k_{2}}$$
 Eq. 2

Figure S1: A representative chromatogram of HPLC analysis for hydrolyzed microcrystalline cellulose.

Figure S3: MALDI-TOF-MS for the reaction solution. m/z = 162 represents the mass number of glucose monomer[-(-O-C₆H₁₀O₄-)n-] in β -1,4 glucan.

Figure S4: Recycling activity for the hydrolysis of crystalline cellulose with functionalized magnetic graphene oxide Fe-G-SO₃H (reaction time=44h).

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

Supporting Scheme 1: Mechanistic steps involved in the hydrolysis of cellulose into water soluble carbohydrates.

Oligomers