Longeracemine, an Unprecedented C-7/C-9 Bonding Alkaloid from *Daphniphyllum longeracemosum*

Qiang Zhang^{a,b}, Yu Zhang^a, Ting-Quan Yang^a, Ying-Tong Di^{a*}, and Xiao-Jiang Hao^{a*}

^aState Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204, Yunnan, PRC
^bResearch Centre for Natural Medicinal Chemistry, College of Science, Northwest A&F University, Yangling 712100, Shaanxi, China
*To whom correspondence should be addressed. E-Mail haoxj@mail.kib.ac.cn, diyt@mail.kib.ac.cn, Phone: (86) 871-5223263. Fax: (86) 871-5223070.

Index

Figure S1: ¹ H NMR (400 MHz) of 1 in CD3OD	s2
Figure S2: ¹³ C and DEPT NMR (100 MHz) of 1 in CD3OD	s3
Figure S3: HSQC (500 MHz) of 1 in CD3OD	s4
Figure S4: ¹ H- ¹ H COSY (500 MHz) of 1 in CD3OD	s5
Figure S5: TOCSY (500 MHz) of 1 in CD3OD	s6
Figure S6: HMBC (500 MHz) of 1 in CD3OD	s7
Figure S7: ROESY (500 MHz) of 1 in CD3OD	s8
Figure S8: ESI ⁺ Mass Spectrometry of 1	s9
Figure S9: HRESI Mass Spectrometry of 1	s10
Coordinate 1a (With 15-OH at β -Orientation)	s11
Coordinate 1b (With 15-OH at α -Orientation)	s12
Coordinate Intermediate D	s13
NMR and MS Data of homodaphniphyllate (3)	s15

Figure S1: ¹H NMR (400 MHz) of **1** in CD3OD

Figure S7: ROESY (500 MHz) of **1** in CD3OD

Figure S8: ESI⁺ Mass Spectrometry of **1**

Acq. Date: Friday, October 30, 2009

Sample Name: 091030ESI Hom108

Acq. Time: 14:47

34 24 3521 48,-

+TOF MS: 1.067 to 1.417 min from 091030ESI Hom108.wiff a=3.55930389593432830e-004, t0=7.96575916585934460e+001, subtracted (0.267 to 0.800 min) Max. 444.6 counts. 360 440-420 400 380-360 340-320 300 280-260 -Intensity, counts 240-220 -۰ 200 -180-160-140-120-100-80-60 -719 40 20 -0↓ 50 250 350 400 450 500 550 650 700 750 800 100 150 300 6Ó0 200 m/z, amu

Figure S9: HRESI Mass Spectrometry of 1

s10

Coordinate **1a** (With 15-OH at β -Orientation)

Optimized at b3lyp/6-311+g(d,p) level E= -1138.930371 a. u. C,0,0.444007,-0.246031,1.539893 C,0,1.23495,1.131732,1.457457 C,0,0.60253,2.305758,2.236056 C,0,-0.563244,2.959819,1.455787 C,0,-1.299126,2.030819,0.45966 C,0,-0.3002,1.136391,-0.373448 C,0,-0.079501,-0.386426,0.052669 C,0,-0.638601,1.436167,-1.858546 C,0,-1.167536,-1.455198,-0.175089 C,0,-2.091358,2.86108,-0.584115 C.0.-1.201842.2.859571.-1.832174 C,0,1.171371,-0.710448,-0.842351 N,0,1.881052,0.588057,-0.950794 C,0,2.277561,-1.703411,-0.426985 C,0,2.577821,-1.686752,1.080861 C,0,1.339986,-1.451671,1.932409 C,0,3.327012,0.390186,-0.954764 C,0,3.470551,-1.123131,-1.237097 C,0,4.853532,-1.70691,-0.954832 C,0,1.182393,1.495312,-0.056034 C,0,-0.652411,-0.273502,2.630213 C,0,-2.628966,-1.097962,0.111674 C,0,-3.55855,-2.263873,-0.121138 O,0,-3.255024,-3.374939,-0.479863 O,0,-4.852695,-1.921471,0.130163 O,0,-1.641842,0.507677,-2.324165 H,0,-2.002929,1.40794,1.004801 H,0,2.263046,0.997783,1.803514 H,0,1.373371,3.063965,2.410633 H,0,0.278418,1.98044,3.22606 H,0,-1.292079,3.390798,2.14958 H,0,-0.167564,3.806443,0.884325 H.0.0.252759,1.343387,-2.480487 H,0,-0.90362,-2.342529,0.409709 H,0,-1.122376,-1.770616,-1.218216 H,0,-3.041343,2.372926,-0.815276 H,0,-2.321592,3.865927,-0.219866 H,0,-1.735848,3.110731,-2.753942 H,0,-0.378718,3.57529,-1.72981 H,0,0.800676,-1.016597,-1.830237 H,0,2.031429,-2.719601,-0.751679 H,0,3.048272,-2.63027,1.375016 H,0,3.313765,-0.910959,1.309362 H,0,1.644982,-1.326994,2.977878 H,0,0.713252,-2.351674,1.914056

 $\begin{array}{l} \text{H}, 0, 3.810961, 0.993579, -1.73183\\ \text{H}, 0, 3.803347, 0.656998, 0.001584\\ \text{H}, 0, 3.249369, -1.276919, -2.30061\\ \text{H}, 0, 5.61277, -1.215587, -1.571265\\ \text{H}, 0, 4.884347, -2.775532, -1.187711\\ \text{H}, 0, 5.148768, -1.583314, 0.090273\\ \text{H}, 0, 1.470706, 2.532125, -0.248926\\ \text{H}, 0, -1.411292, 0.500554, 2.555333\\ \text{H}, 0, -0.188349, -0.172612, 3.615929\\ \text{H}, 0, -1.158941, -1.241547, 2.625505\\ \text{H}, 0, -2.960868, -0.29097, -0.545057\\ \text{H}, 0, -2.802983, -0.75997, 1.135391\\ \text{H}, 0, -1.795477, 0.68106, -3.258218\\ \end{array}$

Coordinate **1b** (With 15-OH at α -Orientation)

Optimized at b3lyp/6-311+g(d,p) level E=-1138.933831 a.u.

C,0.3 14768,-0.374148,1.55334 C,1.111151,1.008242,1.578139 C,0.451351,2.1398,2.396874 C,-0.688942,2.831514,1.612782 C,-1.387263,1.937523,0.563279 C,-0.35023,1.126887,-0.309129 C,-0.145733,-0.415885,0.03993 C,-0.74796 9,1.486891,-1.788534 C,-1.237099,-1.435358,-0.337325 C,-2.232433,2.786 133,-0.424238 C,-1.38151,2.87704,-1.687366 C,1.14255,-0.705358,-0.81292 N,1.851706,0.607043,-0.83767 C,2.238079,-1.713255,-0.408831 C,2.4745 11,-1.784119,1.106979 C,1.195742,-1.604083,1.907989 C,3.303203,0.40476 4,-0.779652 C,3.460657,-1.089244,-1.138476 C,4.832233,-1.686343,-0.829896 C,1.112847,1.467505,0.089839 C,-0.814517,-0.471048,2.607905 C,-2.7 04438,-1.101026,-0.045575 C,-3.632014,-2.23821,-0.410921 O,-3.310325,-3.357228,-0.723296 O,-4.933825,-1.856138,-0.330633 O,0.265881,1.451006,-2.776729 H,-2.057659,1.258063,1.079684 H,2.124408,0.851102,1.956114 H,1.215434,2.886153,2.637969

H,0.094205,1.760364,3.355792 H,-1.440479, 3.227779, 2.303105 H,-0.281327,3.703156,1.089581 H,-1.533891,0.779525,-2.096339 H,-1.002489,-2.394042,0.1354 H,-1.162561,-1.630737,-1.411355 H,-3.178389,2.280847,-0.646828 H,-2.490088,3.761459,-0.002788 H,-1.945 866,3.132821,-2.586804 H,-0.58245,3.618952,-1.580253 H,0.819903,-0.953 34,-1.831506 H,2.007626,-2.708851,-0.800855 H,2.936349,-2.741749,1.366 535 H,3.19469,-1.020515,1.413575 H,1.447234,-1.551093,2.973242 H,0.572 67,-2.500235,1.796697 H,3.818661,1.055192,-1.493582 H,3.719647,0.61732 9,0.214802 H,3.283977,-1.185038,-2.216763 H,5.614667,-1.164141,-1.3888 2 H,4.874079,-2.741213,-1.116557 H,5.083831,-1.617252,0.231513 H,1.412 781,2.510083,-0.035046 H,-1.57157,0.306409,2.569141 H,-0.376904,-0.437 516,3.61009 H,-1.318956,-1.437155,2.524473 H,-3.041132,-0.217483,-0.59 2816 H,-2.889477,-0.885078,1.009193 H,-5.472171,-2.629497,-0.557215 H, 1.099789, 1.225949, -2.305568

Coordinate Intermediate D

Optimized at B3LYP/6-31+G(d) E=1062.559997 a. u.

С	0.31477	-0.37415	1.55334
С	1.11115	1.00824	1.57814
С	0.45135	2.1398	2.39687
С	-0.68894	2.83151	1.61278
С	-1.38726	1.93752	0.56328
С	-0.35023	1.12689	-0.30913
С	-0.14573	-0.41589	0.03993
С	-0.74797	1.48689	-1.78853
С	-1.2371	-1.43536	-0.33733
С	-2.23243	2.78613	-0.42424
С	-1.38151	2.87704	-1.68737
С	1.14255	-0.70536	-0.81292
Ν	1.85171	0.60704	-0.83767

С	2.23808	-1.71326	-0.40883
С	2.47451	-1.78412	1.10698
С	1.19574	-1.60408	1.90799
С	3.3032	0.40476	-0.77965
С	3.46066	-1.08924	-1.13848
С	4.83223	-1.68634	-0.8299
С	1.11285	1.46751	0.08984
С	-0.81452	-0.47105	2.60791
С	-2.70444	-1.10103	-0.04558
С	-3.63201	-2.23821	-0.41092
0	-3.31033	-3.35723	-0.7233
0	-4.93383	-1.85614	-0.33063
0	0.26588	1.45101	-2.77673
Н	-2.05766	1.25806	1.07968
Н	2.12441	0.8511	1.95611
Н	1.21543	2.88615	2.63797
Н	0.09421	1.76036	3.35579
Н	-1.44048	3.22778	2.30311
Н	-0.28133	3.70316	1.08958
Н	-1.53389	0.77953	-2.09634
Н	-1.00249	-2.39404	0.1354
Н	-1.16256	-1.63074	-1.41136
Н	-3.17839	2.28085	-0.64683
Н	-2.49009	3.76146	-0.00279
Н	-1.94587	3.13282	-2.5868
Н	-0.58245	3.61895	-1.58025
Н	0.8199	-0.95334	-1.83151
Н	2.00763	-2.70885	-0.80086
Н	2.93635	-2.74175	1.36654
Н	3.19469	-1.02052	1.41358
Н	1.44723	-1.55109	2.97324
Н	0.57267	-2.50023	1.7967
Н	3.81866	1.05519	-1.49358
Н	3.71965	0.61733	0.2148
Н	3.28398	-1.18504	-2.21676
Н	5.61467	-1.16414	-1.38882
Н	4.87408	-2.74121	-1.11656
Н	5.08383	-1.61725	0.23151
Н	1.41278	2.51008	-0.03505
Н	-1.57157	0.30641	2.56914
Н	-0.3769	-0.43752	3.61009
Н	-1.31896	-1.43716	2.52447
Н	-3.04113	-0.21748	-0.59282
Н	-2.88948	-0.88508	1.00919
Н	-5.47217	-2.6295	-0.55722
Н	1.09979	1.22595	-2.30557

NMR and MS Data of homodaphniphyllate (3)

homodaphniphyllate (3)

¹H NMR (CDCl₃, 500MHz) δ (ppm) 0.89 (d, 6.4 Hz, 3 H), 0.99 (d, 6.4 Hz, 3 H), 1.23 (s, 3 H); ¹³C NMR (CDCl₃, 100MHz) δ (ppm) 62.9 (C-1), 38.0 (C-2), 19.1 (C-3), 25.4 (C-4), 37.0 (C-5), 40.9 (C-6), 46.7 (C-7), 47.8 (C-8), 51.2 (C-9), 77.3 (C-10), 26.7 (C-11), 22.4 (C-12), 28.4 (C-13), 30.9 (C-14), 32.5 (C-15), 25.9 (C-16), 36.5 (C-17), 30.6 (C-18), 21.5 (C-19), 21.0 (C-20), 25.6 (C-21), 174.1 (C-22); ESI MS *m*/*z* 346 [M+H]⁺. These data were consistent to those reported (*Chem. & Biodiver*, 2009, **6**, 105-110.).