Electronic Supporting Information

Hydrophobic vs. Hydrophilic Ionic Liquid Separations Strategies in Support of Continuous Pharmaceutical Manufacturing

Hui Wang,^a Gabriela Gurau,^a Steven P. Kelley,^a Allan S. Myerson,^b and Robin D. Rogers^{a,*}

^aCenter for Green Manufacturing and Department of Chemistry, The University of Alabama, Tuscaloosa, AL 35487, USA; ^bNovartis-MIT Center for Continuous Manufacturing and Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, 66-568, Cambridge, MA 02139, USA

Structure of aliskiren

Fig. S1. Structure of aliskiren.

^{*}Corresponding author: Tel.: (+) 1-205-348-4323; E-mail: rdrogers@as.ua.edu

Crystal structure of 4

The asymmetric unit of the crystal structure of **4** is shown in Fig. S2. The chiral center alpha to the carboxylate group of 2-ethylhexanoate, C8, shows seemingly trigonal planar geometry. This is probably due to the molecule interconverting between its R and S forms through keto-enol tautomerization, causing the peak for C8 to show up in its average position. Despite the inappropriate geometry a disordered hydrogen atom was placed on C8 to give the crystal structure the correct formula. This assignment is supported by the C-C and C-O bond distances, which show no sign of an enolate anion or any reason for true sp^2 hybridization of C8.

Fig. S2. 50% probability ellipsoid diagram of asymmetric unit of 4 (disorder omitted).

Miscibility and solubility of organic solvents, H_2O in the two ionic liquids

Miscibility and solubility of organic solvents, H₂O in [C₂mim][OAc] and [C₂mim][NTf₂] are summarized in Table S1.

Solvent	[C ₂ mim][OAc]		[C ₂ mim][NTf ₂]	
	Totally miscible or not	Solubility in IL (mol/mol IL)	Totally miscible or not	Solubility in IL (mol/mol IL)
H ₂ O	\checkmark	-	×	0.45
EtOH	\checkmark	-		-
MeOH	\checkmark	-	\checkmark	-
Acetone	\checkmark	-	\checkmark	-
EtOAc	×	0.18	\checkmark	-
CHCl ₃		-	×	3.5
<i>n</i> -Heptane	×	0.01	×	0.02
Cyclohexane	×	0.01	×	0.02
Toluene	×	0.21	×	1.85
Tetrahydrofuran	×	0.78	\checkmark	-
CH ₃ CN	\checkmark	-	\checkmark	-

Table S1. Miscibility and solubility of organic solvents, H₂O in [C₂mim][OAc] and [C₂mim][NTf₂].

Separation of standard mixture using [C₂mim][NTf₂]/H₂O or [C₂mim][OAc]/EtOAc

Fig. S3. ¹H NMR spectra of A (see Fig. 1) regenerated from the standard mixture using [C₂mim][NTf₂]/H₂O, pure **2**, **4**, and [C₂mim][NTf₂] in CDCl₃.

Fig. S4. ¹⁹F NMR spectrum of A (see Fig. 1) regenerated from the standard mixture using $[C_2mim][NTf_2]/H_2O$ in CDCl₃.

Fig. S5. ¹H NMR spectra of B (see Fig. 1) regenerated from the standard mixture using [C₂mim][NTf₂]/H₂O, pure **3**, and [C₂mim][NTf₂] in CDCl₃.

Fig. S6. ¹H NMR spectra of C (see Fig. 1) regenerated from the standard mixture using [C₂mim][NTf₂]/H₂O, pure **1**, and [C₂mim][NTf₂] in CDCl₃.

Fig. S7. ¹H NMR spectra of **1** regenerated from the standard mixture by [C₂mim][OAc]/EtOAc, pure **1**, **3**, and [C₂mim][OAc] in CDCl₃.

Fig. S8. ¹H NMR spectra of **3** regenerated from the standard mixture by [C₂mim][OAc]/EtOAc, and pure **1**, **3**, and [C₂mim][OAc] in CDCl₃.

Fig. S9. ¹³C NMR spectra of **3** regenerated from the standard mixture by [C₂mim][OAc]/EtOAc, pure **1**, and **3** in CDCl₃.

Fig. S10. FT-IR spectra of 3 regenerated from the standard mixture by [C₂mim][OAc]/EtOAc (a), pure 3 (b), and 1 (c).

Fig. S11. ¹H NMR spectra of **2** and **4** regenerated from the standard mixture by washing with water, pure **2**, **4** in CDCl₃.

Fig. S12. ¹H NMR spectra of **1** regenerated from the reaction mixture by [C₂mim][OAc]/EtOAc, and pure **1**, **3**, and [C₂mim][OAc] in CDCl₃.

Fig. S13. ¹H NMR spectra of **3** separated from the reaction mixture with [C₂mim][OAc]/EtOAc (further washed by *n*-heptane), and pure **3**, [C₂mim][OAc] in CDCl₃.

Fig. S14. ¹³C NMR spectra of **3** regenerated from the reaction mixture by $[C_2mim][OAc]/EtOAc$ (further washed by *n*-heptane), and pure **3** in CDCl₃.

Fig. S15. FT-IR spectrum of 3 regenerated from the reaction mixture (a) and that of pure 3 (b).

Fig. S16. ¹H NMR spectra of **2** and **4** regenerated from the reaction mixture by water washing, pure **2**, **4** in CDCl₃.