Electronic Supplementary Information

Novel composite photocatalyst based on in situ growth of ultrathin tungsten oxide

nanowires on graphene oxide sheets

Xueting Chang¹, Lihua Dong¹, Yansheng Yin¹, Shibin Sun^{2*}

¹ Institute of Marine Materials Science and Engineering, Shanghai Maritime University, Shanghai

201306, China

² Logistics Engineering College, Shanghai Maritime University, Shanghai 201306, China

Supporting Table

Table S1 Percentages of different bindings calculated from the deconvoluted XPS spectra of C 1s peak.

Binding	GO	W ₁₈ O ₄₉ -rGO
C-C	39.5%	60.9%
C-O	45.5%	26.4%
C=O	11.8%	7%
СООН	3.2%	5.7%

^{*} Corresponding author. E-mail: sunshibin1982@yahoo.com.cn

Supporting Figures

Figure S1 Raman spectrum of W₁₈O₄₉-GO composite.

Figure S2 Comparison of core-level spectra of C 1s for GO sheets and W₁₈O₄₉-GO composite.

Figure S3 TEM image of GO sheets.

Figure S4 TEM image of $W_{18}O_{49}$ nanoflowers prepared in the absence of GO sheets.

Fig. S5 (a) UV-vis adsorption spectra and (b) plots of $(\alpha hv)^{1/2}$ vs hv of $W_{18}O_{49}$ nanoflowers and $W_{18}O_{49}$ -rGO composite. From the linear extrapolation of the plots of $(\alpha hv)^{1/2}$ vs hv, the bandgaps of the $W_{18}O_{49}$ nanoflowers and the $W_{18}O_{49}$ -rGO composite were measured to be 2.78 and 2.56 eV,

respectively.