

Electronic Supplementary Information for RSC Advances

Implication of Endogenous-Decay Current and Quantification of Soluble Microbial Products (SMP) in Microbial Electrolysis Cells

Junyeong An and Hyung-Sool Lee*

Department of Civil and Environmental Engineering, University of Waterloo, 200 University Avenue West Waterloo, Ontario, Canada N2L 3G1

Calculations for coulombic efficiency and H₂ recovery

We computed coulombic efficiency with Eq (S1).

$$\text{Coulombic efficiency} = \frac{\text{cumulative coulombs}}{\text{acetate}_{\text{ox}}} \quad \text{Eq (S1)}$$

where acetate_{ox} is the moles of acetate oxidized in a given time (mol of electrons), cumulative coulombs are cumulative electrons transferred from acetate to an anode in a given time (mole of electrons). We converted measured coulombs with Faraday constant 96,485C = 1 mole of electrons.

H₂ recovery efficiency was computed with Eq (S2)

$$H_2 \text{ recovery efficiency} = \frac{\text{obs H}_2 \text{ volume}}{\text{cumulative coulombs}} \times \frac{1 \text{ mol H}_2}{22.4 \text{ L H}_2} \times \frac{273.15K}{298.15K} \times \frac{2 \text{ mol electrons}}{\text{mol H}_2} \quad \text{Eq (S2)}$$

where obs H₂ volume is measured volume of hydrogen gas in a given time (L). We converted the H₂ volume into moles of electrons using the ideal gas law compensating for temperature effect of 25°C.

SEM image on biofilm anode

Figure S1 shows SEM images of biofilm on the anodes. Figure S1-(A) clearly shows microorganisms (ARB) connected to the anodes through pili-like appendages, which also linked other potential ARB. The connection of microorganisms is more evidently presented in Figure S1-(B).

(A)

(B)

Figure S1. SEM image of biofilm anode. (A) ARB connected with carbon fiber via pili-like appendages, and (B) microorganisms connection through pili-like structures.