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Fig. S-2 Plot of current density and pump motor voltage as a function of time during 

temperature pulse anodization in a mixture of H2C2O4 (0.3 M) and H3PO4 (0.1 M) at 170 V. 
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According to Joule’s equation, the heat (q) that is transferred in a given time is related to the square of 

the current density (J), the barrier layer resistance (R) and the time (t).

 

 

                                                  q = R J2 t              (equation 1) 

 

Reduced cooling results in less efficient dissipation of the heat that is liberated in the oxidation 

reaction. According to conductivity theory1, the high current density in HA is attributed to a reduction 

in barrier layer thickness with increasing voltage. High current densities were observed experimentally 

(Figures 2 and S-2), which is explained by the reduced resistance of barrier layer (thinner barrier 

layer). The high current density associated by periodic heating to barrier layer has also been reported 

to change the curvature of the barrier layer at the Al/Al2O3 interfaces.2 This periodic temperature 

change in the barrier layer could vary the detailed geometry of the barrier layer and hence the pore 

diameter.3,4 In addition, the volume expansion factor involved in the oxidation process was reported to 

increase with current density.5 Hence we may assume that the high current density will also generate a 

higher mechanical stress that aids the rapid oxide dissolution at the interface of Al and Al2O3.
5,6  
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