Supporting Information

The approximate calculation of $\mathbf{N}_{\text {bulk }}$ and $\mathbf{N}_{\text {ads }}$

$\mathrm{N}_{\text {bulk }}$ is determined base on the $10^{\wedge}-4 \mathrm{~mol} / \mathrm{L}$ R6G solution and the illuminated volume of our Raman system. When determining $\mathrm{N}_{\mathrm{ads}}$ in the illuminated volume of our laser, we assume that R6G molecules may be absorbed as a monolayer on the surface of $\mathrm{ZnO} / \mathrm{Ag}$ and the surface of $\mathrm{ZnO} / \mathrm{Ag}$ has been covered with R6G molecules after dropping R6G ethanol solution. Ag NPs are also assumed to closely arrange in the ZnO . This hypothesis represents a theoretical maximum number of R6G molecules absorbed on the surface of $\mathrm{ZnO} / \mathrm{Ag}$ and is surely an overestimate, thus the EF reported here is likely an underestimate rather than an overestimate of the actual EF value.

The details of the calculation:

1. $\mathrm{Ag} \operatorname{NPs}(29 \mathrm{~nm})$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{NP}}=3 / 4 * \pi \mathrm{r}^{3}=7.18 * 10^{\wedge}-18 \mathrm{~cm}^{-1} \\
& \mathrm{~m}_{\mathrm{NP}}=\rho \mathrm{V}_{\mathrm{NP}}=7.56^{*} 10^{\wedge}-17 \mathrm{~g} \\
& \mathrm{~S}_{\mathrm{NP}}=4 \pi \mathrm{r}^{2}=2590 \mathrm{~nm}^{2} \\
& \mathrm{n}_{\mathrm{NP}}=\mathrm{m} / \mathrm{M}=7 * 10^{\wedge}-19 \mathrm{~mol} \\
& \mathrm{~N}=\mathrm{n}_{\mathrm{NP}} * \mathrm{~N}_{\mathrm{A}}=4.2^{*} 10^{\wedge} 5 \mathrm{ind}
\end{aligned}
$$

2. Concentrations of Ag atoms and Ag NPs

$$
\begin{aligned}
& \mathrm{C}_{\text {atoms }}=\mathrm{n}_{\text {atoms }} / \mathrm{V}_{\text {total }}=(0.01 / 170) \mathrm{mol} / 40 \mathrm{ml}=1.47^{*} 10^{\wedge}-3 \mathrm{~mol} / \mathrm{L} \\
& \mathrm{C}_{\mathrm{NPs}}=\mathrm{C}_{\text {atoms }} / \mathrm{N}=1.47^{*} 10^{\wedge}-3 \mathrm{~mol} / \mathrm{L} / 4.2^{*} 10^{\wedge} 5=3.5^{*} 10^{\wedge}-9 \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

3. Mole of Ag NPs

$$
\mathrm{n}_{\text {all }}=\mathrm{C}_{\mathrm{NPs}} * \mathrm{~V}_{\text {total }}=3.5^{*} 10^{\wedge-9 \mathrm{~mol} / \mathrm{L} * 40 \mathrm{ml}=1.4^{*} 10^{\wedge}-10 \mathrm{~mol}, ~}
$$

4. Area of the substrate

$$
\mathrm{S}=2^{*} 1 \mathrm{~cm}^{2}=2^{*} 10^{\wedge-4} \mathrm{~m}^{2}
$$

5. Mole of Ag NPs in per unit substrate
$\mathrm{c}_{\mathrm{Ag}}=\mathrm{n}_{\mathrm{all}} / \mathrm{S}=1.4^{*} 10^{\wedge}-10 \mathrm{~mol} / 2^{*} 10^{\wedge}-4 \mathrm{~m}^{2}=7^{*} 10^{\wedge}-7 \mathrm{~mol} / \mathrm{m}^{2}$
6. R6G numbers absorbed in single Ag NP
$\mathrm{N}_{\mathrm{ads}}=\mathrm{S}_{\mathrm{NP}} * 0.25 \mathrm{~nm}^{2}=647.5$
7. R6G numbers absorbed in per unit substrate and concentration of R6G in ethanol
$\mathrm{c}_{\mathrm{ads}}=\mathrm{c}_{\mathrm{Ag}_{\mathrm{g}}} * \mathrm{~N}_{\mathrm{ads}}=7 * 10^{\wedge}-7 \mathrm{~mol} / \mathrm{m}^{2} * 647.5=4.5^{*} 10^{\wedge}-4 \mathrm{~mol} / \mathrm{m}^{2}$
$\mathrm{C}_{\text {bulk }}=2 \mathrm{~mol} / \mathrm{m}^{3}$
8. EF (L is the coke column length of laser penetrating R6G solution; D1 and D2 are naphthalene column diameter of the liquid sample and the solid sample, respectively. $L=1.9^{*} 10^{\wedge}-2 \mathrm{~m}$; $\mathrm{D}_{1} / \mathrm{D}_{2}=10$)
$\mathrm{EF}_{1360}=\mathrm{EF}=\left(\mathrm{I}_{\text {SERS }} / \mathrm{I}_{\text {Raman }}\right) *\left(\mathrm{~N}_{\text {bulk }} / \mathrm{N}_{\text {ads }}\right)=\left(\mathrm{I}_{\text {SERS }} / \mathrm{I}_{\text {Raman }}\right) *\left(\mathrm{C}_{\text {bulk }} * \mathrm{~L} / \mathrm{c}_{\text {ads }}\right) *\left(\mathrm{D}_{1} / \mathrm{D}_{2}\right)^{2}=(3169 / 1 \mathrm{~s}) /$ $(520 / 60 \mathrm{~s}) *\left(2 / 4.5^{*} 10^{\wedge}-4\right) * 1.9=3^{*} 10^{\wedge} 6$.
$\mathrm{EF}_{1575}=\mathrm{EF}=\left(\mathrm{I}_{\text {SERS }} / \mathrm{I}_{\text {Raman }}\right) *\left(\mathrm{~N}_{\text {bulk }} / \mathrm{N}_{\mathrm{ads}}\right)=\left(\mathrm{I}_{\text {SERS }} / \mathrm{I}_{\text {Raman }}\right) *\left(\mathrm{C}_{\text {bulk }} * \mathrm{~L} / \mathrm{c}_{\mathrm{ads}}\right) *\left(\mathrm{D}_{1} / \mathrm{D}_{2}\right)^{2}=(1474 / 1 \mathrm{~s}) /$ $(251 / 60 \mathrm{~s}) *\left(2 / 4.5 * 10^{\wedge}-4\right) * 1.9=3 * 10^{\wedge} 6=2.98^{*} 10^{\wedge} 6$.
