Electronic Supplementary Information

Direct Methane Fuel Cell with La₂Sn₂O₇-Ni-Gd_{0.1}Ce_{0.9}O_{1.95} Anode and Electrospun

$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}$ -Gd_{0.1}Ce_{0.9}O_{1.95} Cathode

Jin Goo Lee, ^a Chan Min Lee, ^{a,b} Myong Geun Park ^a and Yong Gun Shul*^a

^a Department of Chemical and Bio-molecular Engineering, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul,

120-749, Republic of Korea

^b Department of Molecular and Material Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga, Fukuoka, 816-8580, Japan

*^a Corresponding author - tel: +82-02-2123-3554; fax: +82-02-393-6594; E-mail: <u>shulyg@yonsei.ac.kr</u>

Supplementary Figures

Figure S1. I-V curves of the La₂Sn₂O₇-Ni-GDC/GDC/conventional LSCF-GDC cell depending on the weight ratio of La₂Sn₂O₇ to NiO at 650 °C (CH₄: 25sccm and Air 300 sccm)

Figure S2. Synthesis and fabrication process of the La₂Sn₂O₇ power and La₂Sn₂O₇-Ni-GDC/GDC/electrospun

LSCF-GDC cell

 $\textbf{Table S1.} The elemental composition of the La_{2}Sn_{2}O_{7}, La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-\delta}, and Gd_{0.1}Ce_{0.9}O_{1.95} powders used$

in this study

Atomic fraction of:	La	Sn	Sr	Со	Fe	Gd	Ce	0
La₂Sn₂O7 (Sol-gel synthesis)	0.1742	0.1739						0.6519
$\label{eq:la_0.6} La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3\cdot\delta} \\ (Inframat Advanced Materials)$	0.12		0.08	0.04	0.16			0.6 - δ
Gd _{0.1} Ce _{0.9} O _{1.95} (Rhodia)						0.03	0.31	0.66

Figure S3. Energy-dispersive X-ray spectroscopy (EDX) data of the La₂Sn₂O₇ power calcined at 1000 °C in air

Table S2. Impedance model for the $La_2Sn_2O_7$ -Ni-GDC anode-supported cell with the electrospun LSCF-GDC cathode and the Ni-GDC anode-supported cell with the conventional LSCF-GDC cathode ^[1]

Summit frequency of:	$(R_{Cathode, High} Q_1)$	(R _{Anode, TPB} Q ₂)	(R _{Cathode, Low} Q ₃)	(R _{Anode, Diff} Q ₄)	(R _{Anode, Conv} Q ₅)
700 °C	~18 kHz	~1 kHz	~100 Hz	~50 Hz	~3 Hz
Interpretation:	Charge transfer at the cathode interface	Charge transfer of the anode and diffusion of charged species at the TPB	Dissociative adsorption, transfer of species at the TPB and surface diffusion	Gas diffusion	Gas conversion

Figure S4. ADIS plots of the $La_2Sn_2O_7$ -Ni-GDC anode-supported cell with the electrospun LSCF-GDC cathode and the Ni-GDC anode-supported cell with the conventional LSCF-GDC cathode at 650 °C when the fuel is changed from hydrogen to methane

Figure S5. Temperature-programmed reduction (TPR) data of $La_2Sn_2O_7$ in a flow rate of 50 sccm of mixed gas (methane: 10 % and helium: 90 %) and a temperature range from 100 °C to 750 °C

Figure S6. Voltage variation of the $La_2Sn_2O_7$ -Ni-GDC anode-supported cell with the electrospun LSCF-GDC cathode and the Ni-GDC anode-supported cell with the conventional LSCF-GDC cathode at 650 °C in methane fuel (applied current: 0.3 A, methane and air flow rate: 25 sccm and 300 sccm, respectively)

References

1. J. Nielsen and M. Mogensen, Solid State Ionics, 2011, 189, 74-81