Supplementary Information

Facile preparation of a variety of bimetallic dendrites with high catalytic activity by two simultaneous replacement reactions

Jun Liu, Qian Wu, Fuli Huang, Hefang Zhang, Shili Xu, Wei Huang, Zelin Li*

Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (Ministry of Education of China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081 China

* Corresponding author. Tel.: +86-731-88871533; fax: +86-731-88872531.

E-mail address: lizelin@hunnu.edu.cn (Z. L. Li).

Fig. S1 UV-vis adsorption spectra during catalytic reduction of 4-NP by NaBH₄ in (a) 1950 mL of 7×10^{-5} M 4-NP + 50 mL of 0.2 M NaBH₄ + 2 mg CuPt and (b) 200 mL of 7×10^{-5} M 4-NP + 10 mL of 0.2 M NaBH₄ + 2 mg CuAu. (c) Plots of logarithm of absorbance at 400 nm vs. reaction time for the two systems, where the points of high and low absorbance were removed.

Fig. S2 (a) UV-vis adsorption spectra for the catalytic reduction of 4-NP by NaBH₄ using 1 mg CuPd catalyst in 400 mL of 7×10^{-5} M 4-NP + 20 mL of 0.2 M NaBH₄. (b) Plots of logarithm of absorbance at 400 nm vs. reaction time for the nine repeated experiments of CuPd catalyst, where the points of high and low absorbance were removed.

Fig. S3 SEM images with different enlargement scales for the monometallic (a-c) Ag and (d-f) Cu dendrites.

Fig. S4 EDX spectra for the dendrites of Ag₃Cu₁, Ag₃Cu₁ and Ag₃Cu₁ in Fig. 1.

Fig. S5 XPS of the Ag_1Cu_1 catalyst. (a) A survey spectrum, (b) Ag 3d, (c) Cu $2p_{3/2}$ and (d) O 1s.

Fig. S6 XRD patterns for the prepared bimetallic dendrites of (a) AgPd and (b) AuPd in Fig. 7a and 7b, respectively.

Fig. S7 SEM images with different enlargement scales for the prepared monometallic Pd.

Fig. S8 XPS spectra of the CuPd catalyst. (a) A survey spectrum, (b) Pd 3d, (c) Cu 2p and (d) O 1s.

Fig. S9 UV-vis adsorption spectra during the reduction of 4-NP by NaBH₄ in the presence of monometallic dendrites of (a) Ag and (b) Cu. (c) Plots of logarithm of absorbance at 400 nm vs. reaction time for the two monometallic dendrites.

Fig. S10 (a) UV-vis adsorption spectra for the catalytic reduction of 4-NP by NaBH₄ using 2 mg Pd catalyst in 400 mL of 7×10^{-5} M 4-NP + 20 mL of 0.2 M NaBH₄. (b) Plots of logarithm of absorbance at 400 nm vs. reaction time for five repeated experiments, where the points of high and low absorbance were removed.

Fig. S11 UV-vis adsorption spectra during reduction of 4-NP by NaBH₄ in the presence of (a) AgPd and (b) AuPd dendrites. (c) Plots of logarithm of absorbance at 400 nm vs. reaction time for the two dendrites.

Redox pair	Ag ⁺ /Ag	Ag(NH ₃) ₂ ⁺ /Ag	Ag(I)EDTA/Ag*	Pd ²⁺ /Pd	AuCl ₄ ⁻ /Au
E^{Θ}/V	0.799	0.373	0.366	0.951	1.002
Redox pair	Cu ²⁺ /Cu	Cu(NH ₃) ₄ ²⁺ /Cu*	Cu(II)EDTA/Cu*	PtCl ₆ ²⁻ /Pt*	Mg ²⁺ /Mg

Table S1. Some relevant standard potentials vs. SHE from the handbook [S1].

*The standard electrode potential of $PtCl_6^{2^-}/Pt$ was calculated from that of $PtCl_4^{2^-}/Pt$ and $PtCl_6^{2^-}/PtCl_4^{2^-}$ couples [S1]. The standard electrode potential of $Cu(NH_3)_4^{2^+}/Cu$ was calculated from that of Cu^{2^+}/Cu and the stability constants of $Cu(NH_3)_4^{2^+}$ (K^{Θ}) according to

 $E^{\Theta}[Cu(NH_3)_4^{2+}/Cu] = E^{\Theta}(Cu^{2+}/Cu) + (0.05916/2) \log (1/K^{\Theta})$

The standard electrode potentials of Ag(I)EDTA/Ag and Cu(II)EDTA/Cu were also obtained in the same way.

Table S2. The atomic percentage of Ag (at.%) in the feeding solutions and AgCu bimetallic dendrites.

Sample	Feeding solution	Dendrite
Ag ₃ Cu ₁	75.00	90.01
Ag ₁ Cu ₁	50.00	81.66
Ag ₁ Cu ₃	25.00	77.98

Table S3. 2θ angles (in degree) of the prepared bimetallic AgCu dendrites.

Sample	Ag(111)	Ag(200)	Ag(220)	Ag(311)	Ag(222)	Cu(111)	Cu(200)	Cu(220)	Cu(311)
Ag ₁ Cu ₃	38.09	44.19	64.35	77.55	81.61	43.19	50.29	74.16	89.92
Ag ₁ Cu ₁	38.09	44.19	64.35	77.55	81.61	/	/	74.16	/
Ag ₃ Cu ₁	38.09	44.19	64.35	77.55	81.61	/	/	/	/

Complex	$Ag(NH_3)_2^+$	$Cu(NH_3)_4^{2+}$	Ag(I)EDTA	Cu(II)EDTA
$\log K^{\Theta}$	7.23	12.67	7.32	18.80

Table S4. Some relevant stability constants [S2].

Table S5. Comparison of normalized kinetic parameters (k_n) for the reduction of 4-NP reportedin literature

Reference	Catalyst	<i>m</i> / 10 ⁻³ g	V/mL	c_0/mM	$k_{ m app}$	$k_{\rm n} / 10^{-3}$ mmol g ⁻¹ s ⁻¹
4	Ag dendrites	1.00	2.8	7.1×10^{-2}	$10.4 \times 10^{-3} \ s^{-1}$	2.07
	Pd-Ag dendrites				$39.1\times 10^{-3}\ s^{-1}$	7.77
	Pd-Ag particles				$8.3 \times 10^{-3} \ s^{-1}$	1.65
	Au-Ag dendrites				$10.7\times 10^{-3}\ s^{-1}$	2.13
53	Ni _{33.8} Co _{66.2}	1.00	10	0.1	0.07348 min^{-1}	1.23
	Ni _{33.4} Co _{66.6}				$0.05717 \ \mathrm{min}^{-1}$	0.953
54	RGO-Co	6.00	2	5	$27.16 \times 10^{-3} \text{ min}^{-1}$	0.754
	RGO-Ni ₂₅ Co ₇₅				$93.22 \times 10^{-3} \text{ min}^{-1}$	2.59
	RGO-Ni50Co50				$7.73 \times 10^{-3} \text{ min}^{-1}$	0.215
	RGO-Ni ₇₅ Co ₂₅				$29.06 \times 10^{-3} \text{ min}^{-1}$	0.807
	RGO-Ni				$37.26 \times 10^{-3} \text{ min}^{-1}$	1.04
55	Au/Ag-8 min	0.60	2.8	7.10×10^{-2}	$6.07 \times 10^{-3} \text{ s}^{-1}$	2.01
56	Au-replicas(fresh)	0.30	100	7.82×10^{-3}	$23.5 \times 10^{-2} \text{ min}^{-1}$	10.2
	Au-replicas				16.7×10 ⁻² min ⁻¹	7.25
	(recycled)					
57	Au-Fe ₃ O ₄	2.00	0.04	10	0.63 min^{-1}	2.10
58	Ni	8.00	3	0.1	$3.5\times10^{-2}\ min^{-1}$	0.022
	Ni@Au-30 min				$4.1\times10^{-2}\ min^{-1}$	0.026
	Ni@Au-4 h				$7.6 \times 10^{-2} \text{ min}^{-1}$	0.048
	Ni@Au-12 h				$4.2\times10^{-3}\ min^{-1}$	0.0026

*c*₀: initial concentration of 4-NP, *V*: volume of 4-NP solution, *m*: weight of catalyst.

References

- S1 D. R. Lide, *CRC Handbook of Chemistry and Physics*, ed. P. Vanýsek, CRC Press: Boca Raton,
 FL, 87th edn., 2006/2007, Vol. 8, Iss. 8, pp. 20-29.
- S2 Groups in Central China Normal University, Northeast Normal University; Shaanxi Normal University and Beijing Normal University, *Analytical Chemistry (3rd edn. of Chinese version)*, Higher Education Press: Beijing, 2006, Vol. 1, pp. 344-345.