Supporting Information for

Selective C–C Bond Cleavage of Cyclopentadiene Rings Assisted by Ferric Chloride to Synthesize Water-Soluble Pyrylium Salts

Junwei Ye^{*, [a]}, Xiangdong Zhang^[b], Dai Deng^[a], Guiling Ning^{*, [a]}, Tianqing Liu^[a], Meiling Zhuang^[a], Lijian Yang^[a], Weitao Gong^[a], and Yuan Lin^[a]

^a State Key Laboratory of Fine Chemicals and School of Chemical Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P. R. China. E-mail: junweiye@dlut.edu.cn; ninggl@dlut.edu.cn; Fax: +86-411-84986065

^b State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University. Lanzhou 730000, P. R. China

Experimental section

1) Materials and methods

The solvents were purified with standard methods and dried as needed. Elemental analysis was performed on a Perkin-Elmer 2400 CHN Elemental Analyzer. Absorption spectra were determined on HITACHI U-4100 UV-vis Spectrophotometer. The photoluminescence (PL) studies were conducted with a JASCO FP-6300 Spectrofluorimeter with a 150 W Xe lamp. All spectra were measured at room temperature. The reflection data were collected on a Rigaku R-AXIS RAPID diffractometer (Mokα radiation, graphite monochromator).

2) Synthesis

The raw materials Cpds were synthesized according reported strategy and the chemical structures of Cpds were checked according with reference (S. S. Hirseh, W. J. Beiley, *J. Org. Chem.*, 1978, **43**(**21**), 4090-4094.):

Cpd-**a**. $R_1 = R_2 = Ph$

Cpd-**b**. $R_1 = p$ -MeOPh $R_2 = Ph$

Cpd-c. $R_1 = Ph$ $R_2 = p$ -MeOPh

Cpd-**d**. $R_1 = R_2 = p$ -MeOPh

1,2-bis-(*p*-methoxylphenyl)-4-phenyl cyclopentadiene. ¹H-NMR (25°C, CD₃CN, 400MHz, δ in ppm): 7.627(d, *J*=8Hz, 2H), 7.346(t, *J*=7.6Hz, 2H), 7.304(d, *J*=8.8Hz, 2H), 7.254(m, 3H), 7.073(s, 1H), 6.893(d, *J*=8.8Hz, 2H), 6.808(d, *J*=8.8Hz, 2H), 3.922(s, 2H), 3.784(s, 3H), 3.752 (s, 3H). ¹³C-NMR(25°C, CDCCl₃, 100MHz, δ in ppm): 158.811(s), 158.401(s), 144.214(s),

140.392(s), 138.277(s), 136.075(s), 132.196(s), 129.924(s), 129.723(d), 129.038(d), 128.836(d), 126.885(s), 124.972(d), 114.067(d), 113.881(d), 55.386(q), 45.021(t). MS (API-ES), calcd for $C_{25}H_{22}O_2$, M: 354.4; found, $(M+1)^+/Z$: 355.1. Yields: 69.6%.

1,2,3,4-tetraphenyl cyclopentadiene was synthesized according reported strategy as below and the structure is checked according with reference (]L. Mehr, E. I. Becker, P. E. Spoerri, *J. Am. Chem. Soc.*, 1952, **77(4)**, 984-989.):

1,2,3,4,5-pentaphenyl cyclopentadiene was synthesized according reported strategy as below and the structure is checked according with reference (L. D. Field, K. M. Ho, C. M. Lindall. *Austr. J. Chem.*, 1990, **43**(2), 281-291.):

Synthesis of pyrylium tetrachloroferrates: stirring $FeCl_{3.6}H_2O$ with Cpds in a mixture of toluene and dichloromethane at room temperature for 48 h, a dark precipitate was isolated by filtration. After purification by washing with ether and multiple recrystallizations from a mixture of toluene and dichloromethane, the pure pyrylium salt could be obtained.

The anion exchange reaction: 1 mmol pyrylium tetrachloroferrates and 5 mmol perchlorate were added in 15 mL acetonitrile, stirring for 8 h. When finished, 40 mL dichloromethane were added, and the system was washed with 40 mL water for 3 times, dried with MgSO₄ and evaporating the solvents in reduced pressure. After recrystallizing, the pyrylium perchlorates 1'- 6' were obtained, respectively.

2,4,6-triphenyl pyrylium tetrachloroferrate (1). IR (KBr), $v(\text{cm}^{-1})$: 1631, 1594, 1497, 1253. MS (API-ES), cation calcd for $C_{23}H_{17}O^+$, M⁺: 309.1, found, M⁺/Z: 309.2; anion calcd for FeCl₄⁻, M⁻: 197.7; found, M⁻/Z: 197.9. Anal. Calcd for $C_{23}H_{17}Cl_4FeO$: C, 54.48; H, 3.38; Found: C, 54.29; H, 3.36. Yields: 41.5%.

2,4,6-triphenyl pyrylium perchlorates (1'). ¹H-NMR analysis (25°C, CD₃CN, 400M, δ ppm): 8.71 (s, 2H), 8.43 (m, 4H), 8.31 (m, 2H), 7.86 (m, 3H), 7.78 (m, 6H). ¹³C-NMR analysis (25°C, CD₃CN, 100M, δ ppm): 170.93, 166.45, 135.41, 135.28, 132.91, 130.06, 129.63, 129.02, 128.75, 115.82.

2,6-diphenyl-4-(*p*-methoxylphenyl) pyrylium tetrachloroferrate (2). IR (KBr), $v(\text{cm}^{-1})$: 1638, 1594, 1491 1246, 1179. MS (API-ES), cation calcd for C₂₄H₁₉O₂⁺, M⁺: 339.14, found, M⁺/Z: 339.1; anion calcd for FeCl₄⁻, M⁻: 197.7; found, M⁻/Z: 197.9. Anal. Calcd for C₂₄H₁₉Cl₄FeO₂: C, 53.67; H, 3.57; Found: C, 53.63; H, 3.58. Yields: 45.3%.

2,6-diphenyl-4-(*p*-methoxyphenyl) pyrylium perchlorates (2') ¹H-NMR analysis (25°C, CD₃CN, 400M, δ ppm): 8.59 (s, 2H), 8.38 (m, 6H), 7.84 (m, 2H), 7.75 (m, 4H), 7.28 (d, 2H),

3.99 (s, 3H). ¹³C-NMR analysis (25°C, CD₃CN, 100M, *δ* ppm): 169.67, 166.66, 164.51, 134.94, 132.59, 129.94, 129.23, 128.42, 124.44, 115.86, 113.65, 56.10.

2,6-bis-(*p*-methoxylphenyl)-4-phenyl pyrylium tetrachloroferrate (3). IR (KBr), $v(\text{cm}^{-1})$: 1638, 1601, 1497, 1268, 1173. MS (API-ES), cation calcd for $C_{25}H_{21}O_3^+$, M⁺: 369.2, found, M⁺/Z: 369.0; anion calcd for FeCl₄⁻, M⁻: 197.7; found, M⁻/Z: 197.9. Anal. Calcd for $C_{25}H_{21}Cl_4FeO_3$: C, 52.95; H, 3.73; Found: C, 52.79; H, 3.75. Yields: 47.4%.

2,6-bis-(*p*-methoxyphenyl)-**4**-phenyl pyrylium perchlorates (**3**'). ¹H-NMR analysis (25°C, CD₃CN, 400M, δ ppm): 8.41 (s, 2H), 8.35 (m, 4H), 8.21 (d, 2H), 7.83-7.70(m, 3H), 7.24(m, 4H), 3.97(s, 6H). ¹³C-NMR analysis (25°C, CD₃CN, 100M, δ ppm): 169.70, 165.68, 164.34, 134.51, 133.31, 130.95, 129.90, 129.11, 121.21, 115.63, 113.20, 55.95.

2,4,6-tri-(*p*-methoxylphenyl) pyrylium tetrachloroferrate (4). IR (KBr), $v(\text{cm}^{-1})$: 1638, 1594, 1497, 1268.4, 1174. MS (API-ES), cation calcd for $C_{26}H_{23}O_4^+$, M⁺: 399.2, found, M⁺/Z: 399.2; anion calcd for FeCl₄⁻, M⁻: 197.7; found, M⁻/Z: 197.9. Anal. Calcd for $C_{26}H_{23}Cl_4FeO_4$: C, 52.30; H, 3.88. Found: C, 52.47; H, 3.86. Yields: 42.6%.

2,4,6-tri-(*p***-methoxyphenyl) pyrylium perchlorates (4')**. ¹H-NMR analysis (25°C, CD₃CN, 400M, δ ppm): 8.21 (m, 8H), 7.17 (m, 6H), 3.94 (d, J=4 Hz,9H). ¹³C-NMR analysis (25°C, CD₃CN, 100M, δ ppm) 168.46, 165.85, 165.29, 162.49, 131.83, 130.52, 124.57, 121.19, 115.54, 115.46, 110.99, 55.94, 55.86.

2,3,4,5,-tetraphenyl pyrylium tetrachloroferrate (5). IR (KBr), $v(\text{cm}^{-1})$: 1604.0, 1597, 1434.3, 399.3. MS (API-ES): calcd for $C_{23}H_{17}O^+$, M⁺: 385.48, found, M⁺/Z: 385.0; anion calcd for FeCl₄⁻, M⁻: 197.66; found, M⁻/Z: 197.8. Anal. Calcd for $C_{29}H_{21}Cl_4FeO$: C, 59.73; H, 3.63; Found: C, 59.80; H, 3.71. Yields: 59.5%.

2,4,5,6-tetraphenyl pyrylium perchlorates (5'). ¹H-NMR analysis (25°C, CD₃CN, 400M, δ ppm): 9.49 (s, 1H), 7.62 -7.55(m, 3H), 7.47-7.30 (m, 6H), 7.28-7.13(m, 9H), 6.97 (m, 2H). ¹³C-NMR analysis (25°C, CD₃CN, 100M, δ ppm): 172.64, 169.74, 162.47, 138.01, 137.77, 133.70, 133.21, 131.82, 130.74, 130.62, 130.50, 129.90, 129.85, 129.82, 129.70, 129.32, 129.03, 128.81, 128.77, 128.54, 127.99.

2,3,4,5,6-pentaphenyl pyrylium tetrachloroferrate (6). IR (KBr), $v(\text{cm}^{-1})$: 1646, 1565, 1424, 1179. MS (API-ES), cation calcd for $C_{35}H_{25}O^+$, M⁺: 461.2, found, M⁺/Z: 461.5; anion

calcd for FeCl₄⁻, M⁻: 197.7; found, M⁻/Z: 197.9. Anal. Calcd for C₃₅H₂₅Cl₄FeO: C, 63.77; H, 3.82; Found: C, 63.68; H, 3.84. Yields: 56.7%.

2,3,4,5,6-pentaphenyl pyrylium perchlorates (6'). ¹H-NMR analysis (25°C, CD₃CN, 400M, *δ* ppm): 7.62 (m, 6H), 7.45 (m, 4H), 7.27 (m, 6H), 7.18-7.07 (m,7H), 6.95 (d, 2H). ¹³C-NMR analysis (25°C, CD₃CN, 100M, *δ* ppm): 170.99, 170.72, 135.83, 134.25, 133.41, 132.27, 130.72, 130.54, 130.18, 129.10, 129.02, 128.96, 128.69, 128.33, 127.64.

3) NaOH titration experiments of 3

Six copies of 5 mL aqueous solution of 10^{-4} M **3** were prepared in six conical flasks (10 mL-scale). Another six copies of 5mL NaOH aqueous solution with concentration from 0 to 5×10^{-4} M (10^{-4} M alternation) were subsequently added, respectively. Then the solutions were dissolved by assistant ultrasonic vibration for 3 minutes, and then characterized by Fluorescence and UV-vis absorption.

4) The Hela cells staining

The HeLa cells were seeded in 24 well plates at concentration of 5×10^5 cells/cm² and cultured for 24h in DMEM supplemented with 10% fetal bovine serum at 37 °C in an atmosphere of 5% CO₂. For experiments, the cells were rinsed 2 times with PBS buffer and incubated 4h in the **4**, which were dissolved in PBS at various concentrations. After rinsing 2 times with PBS buffer, fluorescence images were acquired using a phase -contrast microscope (OLYMPUS IX70, Japan).

5) X-ray crystal structure

X-ray crystal structure determinations were performed on a Bruker SMART APEX CCD diffractometer with graphite monochromated Mo K α radiation ($\lambda = 0.71073$ Å) using the SMART and SAINT programs. The structures were solved by direct methods and refined on F^2 by full-matrix least-squares methods with SHELXTL version 5.1. All non-hydrogen atoms

were refined anisotropically. The hydrogen atoms were calculated by geometrical models. Crystallographic data has been deposited in the Cambridge Crystallographic Data Centre with reference numbers 825996-825999 and 873588. A summary of the crystallographic data and structure refinements are tabulated in Table S1 and Table S3. The selected bond lengths and angles are listed in Table S2 and Table S4.

Fig. S1 ¹HNMR spectrum of **1** in CD₃CN.

Fig. S2 ¹HNMR spectrum of **1**' in CD₃CN.

Fig. S3 ¹³C-NMR spectrum of **1**' in CD₃CN.

Fig. S4 ¹HNMR spectrum of **2'** in CD₃CN.

Fig. S5 ¹³C-NMR spectrum of **2**' in CD₃CN.

Fig. S6 ¹HNMR spectrum of **3'** in CD₃CN.

Fig. S7 ¹³C-NMR spectrum of **3**' in CD₃CN.

Fig. S8 ¹HNMR spectrum of **4'** in CD₃CN.

Fig. S9¹³C-NMR spectrum of **4**' in CD₃CN.

Fig. S10 IR spectrum of 1.

Fig. S11 IR spectrum of 2.

Fig. S12 IR spectrum of **3**.

Fig. S13 IR spectrum of 4.

(a)

Fig. S14 The schematic C–H^{...}Cl interactions in **1**.

Fig. S15 ¹HNMR spectrum of **5**' in CD₃CN.

Fig. S16¹³C-NMR spectrum of **5**' in CD₃CN.

Fig. S17 ¹HNMR spectrum of **6'** in CD₃CN.

Fig. S18 ¹³C-NMR spectrum of **6'** in CD₃CN.

Fig. S19 IR spectrum of 5.

Fig. S20 IR spectrum of 6.

Fig. S21 The UV-vis absorption spectra of 1-6 in CH₂Cl₂ solution

	1	2	3	4
Empirical formula	C ₂₃ H ₁₇ Cl ₄ FeO	$C_{24}H_{19}Cl_4FeO_2$	$C_{25}H_{21}Cl_4FeO_3$	C ₂₆ H ₂₃ Cl ₄ FeO ₄
Formula weight	507.02	537.04	567.07	597.09
Crystal system	Orthorhombic	Orthorhombic	Monoclinic	Monoclinic
Space group	<i>P</i> bcn	<i>P</i> bca	<i>P</i> 2(1)/n	<i>P</i> 2(1)/c
<i>a</i> (Å)	10.949(2)	13.319(6)	7.542(12)	7.772(6)
<i>b</i> (Å)	17.190(3)	18.375(7)	18.02(3)	19.769(16)
<i>c</i> (Å)	12.099(2)	19.555(8)	19.28(3)	17.515(14)
β (°)	90	90	96.98(2)	92.980(10)
Volume (Å ³)	2277.2(8)	4786(3)	2601 (7)	2688(4)
Z	4	8	4	4
D_{Calc} (mg/m ⁻³)	1.479	1.491	1.448	1.476
μ (mm ⁻¹)	1.143	1.096	1.015	0.989
F(000)	1028	2184	1156	1220
$R_{\rm int}$	0.1030	0.0658	0.1139	0.0380
Data/restraints/par	2600 / 0 / 134	3818 / 0 / 281	5353 / 0 / 300	6088 / 0 / 319
GOF on F^2	1.000	1.021	1.006	0.999
$R_1 [I > 2\sigma(I)]^*$	0.0765	0.0413	0.0847	0.0479
$wR_2 [I > 2\sigma(I)]^*$	0.1697	0.0863	0.1500	0.1068
R_1 (all data) *	0.1538	0.0819	0.2712	0.0981
wR_2 (all data)*	0.2092	0.1038	0.1981	0.1264

Table S1 Crystallographic data and structure refinements for 1-4

* $R_1 = \Sigma ||F_o| - |F_c||/\Sigma |F_o|$; $wR_2 = \{\Sigma [w(F_o^2 - F_c^2)^2]/\Sigma [w(F_o^2)]^2\}^{1/2}$

1			
Fe(1)-Cl(1)	2.1603(17)	$Fe(1)-Cl(2)^{\#1}$	2.1861(17)
$Fe(1)-Cl(1)^{\#1}$	2.1603(17)	Fe(1)-Cl(2)	2.1861(17)
O(1)-C(1)	1.359(5)	C(4)-C(5)	1.360(7)
O(1)-C(1) ^{#2}	1.359(5)	C(4)-C(9)	1.395(7)
$C(3)-C(2)^{\#2}$	1.390(7)	C(9)-C(8)	1.407(8)
C(3)-C(2)	1.390(7)	C(8)-C(7)	1.379(10)
C(3)-C(10)	1.443(11)	C(5)-C(6)	1.347(9)
C(2)-C(1)	1.331(7)	$C(13)-C(12)^{\#2}$	1.359(8)
C(1)-C(4)	1.446(7)	C(13)-C(12)	1.359(8)
C(10)-C(11)	1.399(7)	C(7)-C(6)	1.346(10)
C(10)-C(11) ^{#2}	1.399(7)	C(11)-C(12)	1.378(8)
Cl(1)-Fe(1)-Cl(1) ^{#1}	108.29(13)	Cl(1)-Fe(1)-Cl(2) ^{#1}	109.44(8)
$Cl(1)^{#1}$ -Fe(1)-Cl(2) ^{#1}	109.26(8)	Cl(1)-Fe(1)-Cl(2)	109.26(8)
$Cl(1)^{#1}$ -Fe(1)-Cl(2)	109.44(8)	$Cl(2)^{#1}$ -Fe(1)-Cl(2)	111.11(10)
C(1)-O(1)-C(1) ^{#2}	123.4(6)	$C(2)^{#2}-C(3)-C(2)$	114.0(7)
C(2) ^{#2} -C(3)-C(10)	123.0(4)	C(2)-C(3)-C(10)	123.0(4)
C(1)-C(2)-C(3)	124.3(5)	C(2)-C(1)-O(1)	117.0(5)
C(2)-C(1)-C(4)	128.2(5)	O(1)-C(1)-C(4)	114.8(5)
C(11)-C(10)-C(11) ^{#2}	117.3(8)	C(11)-C(10)-C(3)	121.3(4)
C(11) ^{#2} -C(10)-C(3)	121.3(4)	C(5)-C(4)-C(9)	118.4(5)
C(5)-C(4)-C(1)	122.0(5)	C(9)-C(4)-C(1)	119.5(5)
C(4)-C(9)-C(8)	119.8(6)	C(7)-C(8)-C(9)	118.0(6)
		1	

Table S2 Selected bond lengths [Å] and angles [°] for 1-4

C(6)-C(5)-C(4)	122.3(7)	C(6)-C(7)-C(8)	121.5(7)
C(12) ^{#2} -C(13)-C(12)	120.6(9)	C(7)-C(6)-C(5)	120.0(7)
C(12)-C(11)-C(10)	120.7(6)	C(13)-C(12)-C(11)	120.3(7)
Symmetry codes: #1 -x,y,-z-	+1/2; #2 -x+2,y,-z-	+1/2.	
2			
Fe(1)-Cl(3)	2.1748(13)	Fe(1)-Cl(1)	2.1826(14)
Fe(1)-Cl(2)	2.1844(12)	Fe(1)-Cl(4)	2.2039(15)
O(1)-C(5)	1.353(4)	O(1)-C(1)	1.355(4)
O(2)-C(15)	1.351(4)	O(2)-C(24)	1.422(4)
C(5)-C(4)	1.350(4)	C(5)-C(18)	1.457(5)
C(1)-C(2)	1.349(4)	C(1)-C(6)	1.464(4)
C(3)-C(2)	1.402(4)	C(3)-C(4)	1.404(4)
C(3)-C(12)	1.455(5)	C(12)-C(17)	1.385(5)
C(12)-C(13)	1.386(4)	C(18)-C(23)	1.376(5)
C(18)-C(19)	1.387(5)	C(6)-C(11)	1.382(5)
C(6)-C(7)	1.382(5	C(15)-C(16)	1.376(5)
C(15)-C(14)	1.377(5)	C(8)-C(9)	1.366(5)
C(8)-C(7)	1.372(5)	C(14)-C(13)	1.377(5)
C(9)-C(10)	1.369(5)	C(23)-C(22)	1.390(5)
C(16)-C(17)	1.367(5)	C(19)-C(20)	1.377(5)
C(20)-C(21)	1.367(5)	C(10)-C(11)	1.382(5)
C(21)-C(22)	1.368(5)	C(6)-C(11)-C(10)	120.1(4)
Cl(3)-Fe(1)-Cl(1)	107.22(5)	Cl(3)-Fe(1)-Cl(2)	109.30(5)
Cl(1)-Fe(1)-Cl(2)	112.85(5)	Cl(3)-Fe(1)-Cl(4)	112.25(5)
Cl(1)-Fe(1)-Cl(4)	108.70(5)	Cl(2)-Fe(1)-Cl(4)	106.62(5)
		I	

C(5)-O(1)-C(1)	121.5(3)	C(15)-O(2)-C(24)	119.1(3)
C(4)-C(5)-O(1)	119.6(3)	C(4)-C(5)-C(18)	127.7(3)
O(1)-C(5)-C(18)	112.6(3)	C(2)-C(1)-O(1)	119.8(3)
C(2)-C(1)-C(6)	127.5(3)	O(1)-C(1)-C(6)	112.7(3)
C(2)-C(3)-C(4)	116.2(3)	C(2)-C(3)-C(12)	122.0(3)
C(4)-C(3)-C(12)	121.8(3)	C(17)-C(12)-C(13)	116.7(3)
C(17)-C(12)-C(3)	121.2(3)	C(13)-C(12)-C(3)	122.1(3)
C(5)-C(4)-C(3)	121.5(3)	C(23)-C(18)-C(19)	118.2(4)
C(23)-C(18)-C(5)	121.1(3)	C(19)-C(18)-C(5)	120.7(3)
C(1)-C(2)-C(3)	121.4(3)	C(11)-C(6)-C(7)	118.9(3)
C(11)-C(6)-C(1)	120.3(3)	C(7)-C(6)-C(1)	120.8(3)
O(2)-C(15)-C(16)	115.6(3)	O(2)-C(15)-C(14)	124.7(4)
C(16)-C(15)-C(14)	119.7(3)	(9)-C(8)-C(7)	120.3(4)
C(13)-C(14)-C(15)	119.3(3)	C(8)-C(9)-C(10)	120.0(4)
C(18)-C(23)-C(22)	120.9(4)	C(14)-C(13)-C(12)	122.2(3)
C(17)-C(16)-C(15)	120.0(4)	C(20)-C(19)-C(18)	120.5(4)
C(21)-C(20)-C(19)	120.8(4)	C(16)-C(17)-C(12)	122.0(4)
C(9)-C(10)-C(11)	120.1(4)	C(8)-C(7)-C(6)	120.4(4)
C(20)-C(21)-C(22)	119.5(4)	C(21)-C(22)-C(23)	120.0(4)
3			
Fe(1)-Cl(1)	2.154(3)	Fe(1)-Cl(3)	2.163(3)
Fe(1)-Cl(4)	2.181(4)	Fe(1)-Cl(2)	2.198(3)
O(1)-C(1)	1.333(7)	O(1)-C(5)	1.370(8)
C(6)-C(7)	1.369(8)	C(6)-C(11)	1.393(9)
C(6)-C(1)	1.495(9)	C(3)-C(4)	1.395(9)
		1	

C(3)-C(2)	1.422(8)	C(3)-C(12)	1.460(9)
O(2)-C(24)	1.358(8)	O(2)-C(9)	1.373(7)
C(1)-C(2)	1.363(8)	C(5)-C(4)	1.342(9)
C(5)-C(18)	1.469(10)	C(11)-C(10)	1.358(8)
C(7)-C(8)	1.426(8)	C(9)-C(10)	1.364(9)
C(9)-C(8)	1.420(9)	C(17)-C(16)	1.419(11)
C(17)-C(12)	1.424(9)	C(12)-C(13)	1.363(9)
C(15)-C(14)	1.333(10)	C(15)-C(16)	1.349(12)
C(18)-C(23)	1.362(9)	C(18)-C(19)	1.419(9)
O(3)-C(25)	1.361(9)	O(3)-C(21)	1.419(10)
C(22)-C(23)	1.370(10)	C(22)-C(21)	1.385(13)
C(20)-C(21)	1.368(12)	C(20)-C(19)	1.377(11)
C(14)-C(13)	1.401(10)		
Cl(1)-Fe(1)-Cl(3)	108.18(12)	Cl(1)-Fe(1)-Cl(4)	111.27(18)
Cl(3)-Fe(1)-Cl(4)	110.32(17)	Cl(1)-Fe(1)-Cl(2)	111.15(14)
Cl(3)-Fe(1)-Cl(2)	111.04(13)	Cl(4)-Fe(1)-Cl(2)	104.88(14)
C(1)-O(1)-C(5)	120.5(6)	C(7)-C(6)-C(11)	119.2(7)
C(7)-C(6)-C(1)	119.3(7)	C(11)-C(6)-C(1)	121.4(7)
C(4)-C(3)-C(2)	113.9(7)	C(4)-C(3)-C(12)	125.1(7)
C(2)-C(3)-C(12)	121.0(7)	C(24)-O(2)-C(9)	119.1(7)
O(1)-C(1)-C(2)	120.9(7)	O(1)-C(1)-C(6)	111.6(6)
C(2)-C(1)-C(6)	127.4(7)	C(4)-C(5)-O(1)	119.2(7)
C(4)-C(5)-C(18)	131.2(8)	O(1)-C(5)-C(18)	109.5(7)
C(10)-C(11)-C(6)	119.7(7)	C(6)-C(7)-C(8)	122.7(7)
C(10)-C(9)-O(2)	114.6(7)	C(10)-C(9)-C(8)	121.2(7)

O(2)-C(9)-C(8)	124.2(7)	C(9)-C(8)-C(7)	115.1(7)
C(16)-C(17)-C(12)	115.9(8)	C(13)-C(12)-C(17)	118.8(8)
C(13)-C(12)-C(3)	123.0(8)	C(17)-C(12)-C(3)	118.2(8)
C(1)-C(2)-C(3)	121.5(7)	C(14)-C(15)-C(16)	117.5(9)
C(5)-C(4)-C(3)	124.1(7)	C(23)-C(18)-C(19)	118.1(8)
C(23)-C(18)-C(5)	123.0(8)	C(19)-C(18)-C(5)	118.9(8)
C(11)-C(10)-C(9)	122.0(7)	C(25)-O(3)-C(21)	115.3(9)
C(23)-C(22)-C(21)	117.0(9)	C(21)-C(20)-C(19)	119.9(9)
C(15)-C(14)-C(13)	122.2(9)	C(15)-C(16)-C(17)	124.7(10)
C(18)-C(23)-C(22)	123.5(8)	C(12)-C(13)-C(14)	121.0(8)
C(20)-C(21)-C(22)	122.2(8)	C(20)-C(21)-O(3)	125.4(12)
C(22)-C(21)-O(3)	112.5(12)	C(20)-C(19)-C(18)	119.3(8)
4			
-			
Fe(1)-Cl(4)	2.1807(15)	Fe(1)-Cl(3)	2.1886(15)
Fe(1)-Cl(4) Fe(1)-Cl(2)	2.1807(15) 2.1965(17)	Fe(1)-Cl(3) Fe(1)-Cl(1)	2.1886(15) 2.2043(16)
Fe(1)-Cl(4) Fe(1)-Cl(2) O(1)-C(1)	2.1807(15) 2.1965(17) 1.353(3)	Fe(1)-Cl(3) Fe(1)-Cl(1) O(1)-C(5)	2.1886(15) 2.2043(16) 1.366(3)
Fe(1)-Cl(4) Fe(1)-Cl(2) O(1)-C(1) O(2)-C(9)	2.1807(15) 2.1965(17) 1.353(3) 1.364(3)	Fe(1)-Cl(3) Fe(1)-Cl(1) O(1)-C(5) O(2)-C(12)	2.1886(15) 2.2043(16) 1.366(3) 1.432(4)
Fe(1)-Cl(4) Fe(1)-Cl(2) O(1)-C(1) O(2)-C(9) O(4)-C(23)	2.1807(15) 2.1965(17) 1.353(3) 1.364(3) 1.359(3)	Fe(1)-Cl(3) Fe(1)-Cl(1) O(1)-C(5) O(2)-C(12) O(4)-C(26)	2.1886(15) 2.2043(16) 1.366(3) 1.432(4) 1.427(4)
Fe(1)-Cl(4) Fe(1)-Cl(2) O(1)-C(1) O(2)-C(9) O(4)-C(23) C(5)-C(4)	2.1807(15) 2.1965(17) 1.353(3) 1.364(3) 1.359(3) 1.368(4)	Fe(1)-Cl(3) Fe(1)-Cl(1) O(1)-C(5) O(2)-C(12) O(4)-C(26) C(5)-C(20)	2.1886(15) 2.2043(16) 1.366(3) 1.432(4) 1.427(4) 1.446(4)
Fe(1)-Cl(4) Fe(1)-Cl(2) O(1)-C(1) O(2)-C(9) O(4)-C(23) C(5)-C(4) C(3)-C(4)	2.1807(15) 2.1965(17) 1.353(3) 1.364(3) 1.359(3) 1.368(4) 1.393(4)	Fe(1)-Cl(3) Fe(1)-Cl(1) O(1)-C(5) O(2)-C(12) O(4)-C(26) C(5)-C(20) C(3)-C(2)	2.1886(15) 2.2043(16) 1.366(3) 1.432(4) 1.427(4) 1.446(4) 1.407(4)
Fe(1)-Cl(4) Fe(1)-Cl(2) O(1)-C(1) O(2)-C(9) O(4)-C(23) C(5)-C(4) C(3)-C(4) C(3)-C(13)	2.1807(15) 2.1965(17) 1.353(3) 1.364(3) 1.359(3) 1.368(4) 1.393(4) 1.457(4)	Fe(1)-Cl(3) Fe(1)-Cl(1) O(1)-C(5) O(2)-C(12) O(4)-C(26) C(5)-C(20) C(3)-C(2) C(13)-C(18)	2.1886(15) 2.2043(16) 1.366(3) 1.432(4) 1.427(4) 1.427(4) 1.446(4) 1.407(4) 1.395(4)
Fe(1)-Cl(4) Fe(1)-Cl(2) O(1)-C(1) O(2)-C(9) O(4)-C(23) C(5)-C(4) C(3)-C(4) C(3)-C(13) C(13)-C(14)	2.1807(15) 2.1965(17) 1.353(3) 1.364(3) 1.359(3) 1.368(4) 1.393(4) 1.457(4) 1.404(4)	Fe(1)-Cl(3) Fe(1)-Cl(1) O(1)-C(5) O(2)-C(12) O(4)-C(26) C(5)-C(20) C(3)-C(2) C(13)-C(18) C(7)-C(6)	2.1886(15) 2.2043(16) 1.366(3) 1.432(4) 1.427(4) 1.427(4) 1.446(4) 1.407(4) 1.395(4) 1.386(4)
Fe(1)-Cl(4) Fe(1)-Cl(2) O(1)-C(1) O(2)-C(9) O(4)-C(23) C(5)-C(4) C(3)-C(4) C(3)-C(13) C(13)-C(14) C(7)-C(8)	2.1807(15) 2.1965(17) 1.353(3) 1.364(3) 1.359(3) 1.368(4) 1.393(4) 1.457(4) 1.404(4) 1.387(4)	Fe(1)-Cl(3) Fe(1)-Cl(1) O(1)-C(5) O(2)-C(12) O(4)-C(26) C(5)-C(20) C(3)-C(2) C(13)-C(18) C(7)-C(6) C(6)-C(11)	2.1886(15) 2.2043(16) 1.366(3) 1.432(4) 1.427(4) 1.427(4) 1.446(4) 1.407(4) 1.395(4) 1.386(4) 1.403(4)
Fe(1)- $Cl(4)$ $Fe(1)$ - $Cl(2)$ $O(1)$ - $C(1)$ $O(2)$ - $C(9)$ $O(4)$ - $C(23)$ $C(5)$ - $C(4)$ $C(3)$ - $C(13)$ $C(13)$ - $C(14)$ $C(7)$ - $C(8)$ $C(6)$ - $C(1)$	2.1807(15) 2.1965(17) 1.353(3) 1.364(3) 1.359(3) 1.368(4) 1.393(4) 1.457(4) 1.404(4) 1.387(4) 1.458(4)	Fe(1)-Cl(3) Fe(1)-Cl(1) O(1)-C(5) O(2)-C(12) O(4)-C(26) C(5)-C(20) C(3)-C(2) C(13)-C(18) C(7)-C(6) C(6)-C(11) C(20)-C(21)	2.1886(15) 2.2043(16) 1.366(3) 1.432(4) 1.427(4) 1.427(4) 1.446(4) 1.407(4) 1.395(4) 1.386(4) 1.403(4) 1.399(4)
Fe(1)-Cl(4) Fe(1)-Cl(2) O(1)-C(1) O(2)-C(9) O(4)-C(23) C(5)-C(4) C(3)-C(4) C(3)-C(13) C(13)-C(14) C(7)-C(8) C(6)-C(1) C(20)-C(25)	2.1807(15) 2.1965(17) 1.353(3) 1.364(3) 1.359(3) 1.368(4) 1.393(4) 1.457(4) 1.404(4) 1.387(4) 1.458(4) 1.405(4)	Fe(1)-Cl(3) $Fe(1)$ -Cl(1) $O(1)$ -C(5) $O(2)$ -C(12) $O(4)$ -C(26) $C(5)$ -C(20) $C(3)$ -C(2) $C(13)$ -C(18) $C(7)$ -C(6) $C(6)$ -C(11) $C(20)$ -C(21) $C(2)$ -C(1)	2.1886(15) 2.2043(16) 1.366(3) 1.432(4) 1.432(4) 1.427(4) 1.427(4) 1.446(4) 1.407(4) 1.395(4) 1.386(4) 1.403(4) 1.399(4) 1.357(4)

C(24)-C(25)	1.364(4)	C(24)-C(23)	1.385(4)
O(3)-C(16)	1.354(4)	O(3)-C(19)	1.418(4)
C(8)-C(9)	1.388(4)	C(22)-C(21)	1.393(4)
C(22)-C(23)	1.399(4)	C(17)-C(18)	1.380(4)
C(17)-C(16)	1.390(4)	C(11)-C(10)	1.375(4)
C(14)-C(15)	1.373(4)	C(16)-C(15)	1.394(4)
Cl(4)-Fe(1)-Cl(3)	110.11(7)	Cl(4)-Fe(1)-Cl(2)	112.27(5)
Cl(3)-Fe(1)-Cl(2)	106.98(5)	Cl(4)-Fe(1)-Cl(1)	106.42(6)
Cl(3)-Fe(1)-Cl(1)	111.57(5)	Cl(2)-Fe(1)-Cl(1)	109.55(7)
C(1)-O(1)-C(5)	123.1(2)	(9)-O(2)-C(12)	117.5(3)
C(23)-O(4)-C(26)	119.1(3)	O(1)-C(5)-C(4)	118.1(2)
O(1)-C(5)-C(20)	113.7(2)	C(4)-C(5)-C(20)	128.2(3)
C(4)-C(3)-C(2)	116.8(3)	C(4)-C(3)-C(13)	122.0(3)
C(2)-C(3)-C(13)	121.1(3)	C(5)-C(4)-C(3)	121.7(3)
C(18)-C(13)-C(14)	117.7(3)	C(18)-C(13)-C(3)	120.9(3)
C(14)-C(13)-C(3)	121.4(3)	C(6)-C(7)-C(8)	121.3(3)
C(7)-C(6)-C(11)	118.3(3)	C(7)-C(6)-C(1)	121.7(3)
C(11)-C(6)-C(1)	120.0(3)	C(21)-C(20)-C(25)	117.8(3)
C(21)-C(20)-C(5)	121.9(2)	C(25)-C(20)-C(5)	120.3(3)
C(1)-C(2)-C(3)	121.6(3)	C(25)-C(24)-C(23)	120.4(3)
C(16)-O(3)-C(19)	118.4(3)	C(7)-C(8)-C(9)	119.6(3)
O(1)-C(1)-C(2)	118.6(3)	O(1)-C(1)-C(6)	114.3(2)
C(2)-C(1)-C(6)	127.0(3)	C(21)-C(22)-C(23)	118.4(3)
C(22)-C(21)-C(20)	121.6(3)	O(4)-C(23)-C(24)	116.0(3)
O(4)-C(23)-C(22)	123.5(3)	C(24)-C(23)-C(22)	120.5(3)

C(18)-C(17)-C(16)	120.1(3)	C(24)-C(25)-C(20)	121.2(3)
C(10)-C(11)-C(6)	120.1(3)	C(15)-C(14)-C(13)	121.3(3)
C(11)-C(10)-C(9)	121.1(3)	C(17)-C(18)-C(13)	121.3(3)
O(3)-C(16)-C(17)	124.6(3)	O(3)-C(16)-C(15)	116.0(3)
C(17)-C(16)-C(15)	119.4(3)	O(2)-C(9)-C(10)	115.6(3)
O(2)-C(9)-C(8)	124.9(3)	C(10)-C(9)-C(8)	119.5(3)
C(14)-C(15)-C(16)	120.1(3)		

Empirical formula	$C_{29}H_{23}Cl_4FeO_2$
Formula weight	601.12
Crystal system	monoclinic
Space group	P2(1)/c
<i>a</i> (Å)	10.4870(6)
<i>b</i> (Å)	32.446(2)
<i>c</i> (Å)	9.5526(5)
β (°)	107.715(4)
Volume (Å ³)	3096.3(3)
Ζ	4
$D_{\text{Calc}} (\text{mg/m}^{-3})$	1.290
$\mu (\mathrm{mm}^{-1})$	0.855
$F_{(000)}$	1228
R _{int}	0.0338
Data / restraints / parameters	7103 / 0 / 334
$GOF \text{ on } F^2$	1.056
$R_1 [I > 2\sigma(I)]^*$	0.0737
$wR_2 [I > 2\sigma(I)]^*$	0.2357
R_1 (all data) *	0.1210
wR_2 (all data)*	0.2744

Table S3 Crystal data and structure refinement for $5 \cdot H_2O$.

 $*R_{1} = \Sigma ||F_{o}| - |F_{c}||/\Sigma |F_{o}|; wR_{2} = \{\Sigma [w(F_{o}^{2} - F_{c}^{2})^{2}]/\Sigma [w(F_{o}^{2})]^{2}\}^{1/2}$

O(1)-C(5)	1.336(4)	C(18)-C(23)	1.377(5)
O(1)-C(1)	1.339(4)	C(18)-C(19)	1.390(5)
C(1)-C(2)	1.383(5)	C(19)-C(20)	1.376(6)
C(1)-C(6)	1.462(5)	C(20)-C(21)	1.351(8)
C(2)-C(3)	1.403(4)	C(21)-C(22)	1.376(8)
C(2)-C(12)	1.483(5)	C(22)-C(23)	1.394(7)
C(3)-C(4)	1.409(5)	C(24)-C(25)	1.384(5)
C(3)-C(18)	1.480(5)	C(24)-C(29)	1.384(5)
C(4)-C(5)	1.346(5)	C(25)-C(26)	1.383(6)
C(4)-C(24)	1.487(5)	C(26)-C(27)	1.353(8)
C(6)-C(11)	1.386(5)	C(27)-C(28)	1.363(9)
C(6)-C(7)	1.391(5)	C(28)-C(29)	1.381(7)
C(7)-C(8)	1.381(6)	Fe(1)- $Cl(4)$	2.1658(14)
C(8)-C(9)	1.360(7)	Fe(1)-Cl(1)	2.1649(13)
C(9)-C(10)	1.364(7)	Fe(1)-Cl(2)	2.1852(12)
C(10)-C(11)	1.370(6)	Fe(1)-Cl(3)	2.1860(16)
C(12)-C(13)	1.376(6)	C(14)-C(15)	1.344(9)
C(12)-C(17)	1.385(6)	C(15)-C(16)	1.369(10)
C(13)-C(14)	1.381(7)	C(16)-C(17)	1.390(7)
C(5)-O(1)-C(1)	122.0(3)	C(23)-C(18)-C(3)	120.1(3)
O(1)-C(1)-C(2)	119.2(3)	C(19)-C(18)-C(3)	120.8(3)
O(1)-C(1)-C(6)	112.2(3)	C(20)-C(19)-C(18)	120.5(4)
C(2)-C(1)-C(6)	128.6(3)	C(21)-C(20)-C(19)	120.2(5)
C(1)-C(2)-C(3)	119.4(3)	C(20)-C(21)-C(22)	120.6(5)
C(1)-C(2)-C(12)	119.8(3)	C(21)-C(22)-C(23)	119.9(5)
C(3)-C(2)-C(12)	120.8(3)	C(18)-C(23)-C(22)	119.7(5)
C(2)-C(3)-C(4)	119.1(3)	C(25)-C(24)-C(29)	119.3(4)
C(2)-C(3)-C(18)	121.5(3)	C(25)-C(24)-C(4)	120.1(3)
C(4)-C(3)-C(18)	119.4(3)	C(29)-C(24)-C(4)	120.4(4)
C(5)-C(4)-C(3)	117.9(3)	C(24)-C(25)-C(26)	120.2(4)
C(5)-C(4)-C(24)	116.7(3)	C(27)-C(26)-C(25)	119.9(5)
C(3)-C(4)-C(24)	125.3(3)	C(26)-C(27)-C(28)	120.8(5)
O(1)-C(5)-C(4)	122.5(3)	C(27)-C(28)-C(29)	120.5(5)
C(11)-C(6)-C(7)	118.5(4)	C(28)-C(29)-C(24)	119.4(5)

Table S4 Selected	bond lengths [Å	and angles [°] for 5·H₂O .

C(11)-C(6)-C(1)	122.0(3)	Cl(4)- $Fe(1)$ - $Cl(1)$	111.20(8)
C(7)-C(6)-C(1)	119.5(3)	Cl(4)-Fe(1)-Cl(2)	107.88(6)
C(8)-C(7)-C(6)	119.6(4)	Cl(1)-Fe(1)-Cl(2)	108.99(6)
C(9)-C(8)-C(7)	121.1(5)	Cl(4)-Fe(1)-Cl(3)	109.99(9)
C(10)-C(9)-C(8)	119.4(5)	Cl(1)-Fe(1)-Cl(3)	108.94(7)
C(9)-C(10)-C(11) C(10)-C(11)-C(6)	120.8(5) 120.5(4)	Cl(2)-Fe(1)-Cl(3) C(15)-C(14)-C(13)	109.82(6) 119.5(6)
C(13)-C(12)-	119.6(4)	C(14)-C(15)-C(16)	121.7(6)
C(13)-C(12)-C(2)	121.5(4)	C(15)-C(16)-C(17)	119.5(6)
C(17)-C(12)-C(2)	118.9(4)	C(12)-C(17)-C(16)	119.2(5)
C(12)-C(13)-	120.5(5)	C(23)-C(18)-C(19)	119.1(4)