Supporting Information

for

Inducing Chirality on ZnS Nanoparticles for Asymmetric Aldol Condensation Reaction

Ekta Shah and Hemant P Soni*

Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda,

Vadodara-390 002, Gujarat, India

Figure 1(a). FTIR of L-Proline.

Band Assignment

SI. No.	Wave numbers cm ⁻¹	Band assignments	SI. No.	Wave numbers cm ⁻¹	Band assignments
1	3012	u _{as} CH2	12	1242	υC-Ο
2	2978	u _{as} CH2	13	1189	тСН2
3	2969	υCH	14	1090	Fring
4	2956	usCH2	15	1025	Fring
5	2938	usCH2	16	950	үОН
6	1645	uC=O	17	907	Fring
7	1544	δΝΗ	18	866	Fring
8	1446	δCH2	19	850	ρCH2
9	1375	δΟΗ	20	799	pCH2
10	1320	тСН2	21	721	δC=0
11	1292	δርΗ	22	630	Δring

Figure 1(b). FTIR of L-proline/ZnS.

Band Assignment

SI. No.	Wave numbers cm ⁻¹	Band assignments		
1	3015	Asymmetric stretching	CH ₂	
2	2943	Asymmetric stretching	CH ₂	
3	2903	Symmetric stretching	CH ₂	
4	1661	Stretching	C=0	
5	1552	In-place bending	NH	
6	1392	In-place bending	OH	
7	1331	Twisting	CH ₂	
8	1281	In-plane bending	СН	
9	1153	Twisting	CH ₂	

10	1038	Stretching	Ring
11	946	Out of plane bending	OH
12	844	Rocking	CH ₂
13	671	Stretching	Zn-S
14	636	In-plane bending	Ring
15	551	Stretching	Zn-S

CD spectra were recorded on a Jasco, J-815 CD spectrometer.

Figure 2(a). CD Spectra of undoped L-Proline adsorbed ZnS nanoparticles.

Figure 2(b). CD Spectra of undoped D-Proline adsorbed ZnS nanoparticles.

Figure 3(a): NMR of 4-Hydroxy-4phenylbutan-2-one after one recycle.

Figure 3(b). NMR of 4-Hydroxy-4phenylbutan-2-one after third cycle.

```
Electronic Supplementary Material (ESI) for RSC Advances This journal is \textcircled{C} The Royal Society of Chemistry 2013
```


Figure 4. ¹³C of 4-(1-Naphthyl)-4-hydroxybutan-2-one.

Figure 5. Chiral HPLC of 4-(1-Naphthyl)-4-hydroxybutan-2-one.

Figure 6. ¹H NMR of 4-(1-Naphthyl)-4-hydroxybutan-2-one.

Figure 7. Mass spectrum of 4-(1-Naphthyl)-4-hydroxy2-butanone.

Figure 8. FTIR spectrum of 4-(1-Naphthyl)-4-hydroxybutan-2-one.

Figure 9. ¹H NMR of 4-Hydroxy-4-phenylbutan-2-one.

Figure 10. ¹³C of 4-Hydroxy-4-phenylbutan-2-one.

Figure 11. Mass spectrum of 4-Hydroxy-4-phenylbutan-2-one.

Figure 12. FTIR spectrum of 4-Hydroxy-4-phenylbutan-2-one.

Figure 13. Chiral HPLC of 4-Hydroxy-4-phenylbutan-2-one.

Figure 14. ¹H NMR of 4-Hydroxy-4-(4'-Chlorophenyl)butan-2-one.

Figure 15. ¹³C of 4-Hydroxy-4-(4'-Chlorophenyl)butan-2-one.

Figure 16. FTIR spectrum of 4-Hydroxy-4-(4'-Chlorophenyl)butan-2-one.

Figure 17. Chiral HPLC of 4-Hydroxy-4-(4'-Chlorophenyl)butan-2-one.

Figure 18. ¹H NMR of 4-Hydroxy-4-(4'-cyanophenyl)butan-2-one.

Figure 19. ¹³C of 4-Hydroxy-4-(4'-cyanophenyl)butan-2-one.

Figure 20. Mass spectrum of 4-Hydroxy-4-(4'-cyanophenyl)butan-2-one.

Figure 21. FTIR spectrum of 4-Hydroxy-4-(4'-cyanophenyl)butan-2-one.

Figure 22. Chiral HPLC of 4-Hydroxy-4-(4'-cyanophenyl)butan-2-one.

Figure 23. ¹H NMR of 4-(2-Naphthyl)-4-hydroxybutan-2-one.

Figure 24. ¹³C spectrum of 4-(2-Naphthyl)-4-hydroxybutan-2-one.

Figure 25. Mass spectrum of 4-(2-Naphthyl)-4-hydroxybutan-2-one.

Figure 26. FTIR spectrum of 4-(2-Naphthyl)-4-hydroxybutan-2-one.

Figure 27. Chiral HPLC of 4-(2-Naphthyl)-4-hydroxybutan-2-one.

Figure 28. ¹H NMR of 4-Hydroxy-4-(4-methylphenyl)butan-2-one.

Figure 29. ¹³C spectrum of 4-Hydroxy-4-(4-methylphenyl)butan-2-one.

Figure 30. Mass spectrum of 4-Hydroxy-4-(4-methylphenyl)butan-2-one.

Figure 31. FTIR spectrum of 4-Hydroxy-4-(4-methylphenyl)butan-2-one.

Figure: HPLC of 4-Hydroxy-4-(4-methylphenyl)-butan-2-one

Figure : ¹H NMR of 4-Hydroxy-4-(4'-nitrophenyl)butan-2-one

Figure : C13 of 4-Hydroxy-4-(4'-nitrophenyl)butan-2-one

Figure : Mass of 4-Hydroxy-4-(4'-nitrophenyl)butan-2-one

Figure: IR of 4-Hydroxy-4-(4'-nitrophenyl)butan-2-one

Figure: HPLC of 4-Hydroxy-4-(4'-nitrophenyl)butan-2-one