Electronic Supplementary Information

Conversion of Biomass-derived Ethyl Levulinate into γ-Valerolactone via Hydrogen Transfer from Supercritical Ethanol over ZrO₂ Catalyst

Xing Tang, Lei Hu, Yong Sun^{*}, Geng Zhao, Weiwei Hao, and Lu Lin*

School of Energy Research, Xiamen University, Xiamen, China

Table S1	Conversion	of EL into	GVL in	various	alcohol	solvents '	a
	0011.0101011	01 DD 11100	• · = ···	10000		001.01100	

Entry	Solvent	Pressure ^b (bar)	GVL	EL	Other	
			yield	conversion	levulinates	
			(%)	(%)	(%)	
1	methanol	98	14.9	72.3	39.9 (ML) ^b	
2	ethanol	70	62.5	81.5		
3	isopropanol	64	93.4	97.2	IPL^{c}	
4	1-butanol	26	84.4	95.5	$2.9 (BL)^{d}$	
^{<i>a</i>} Reaction conditions: EL, 2 g; ZrO ₂ -573 catalyst, 1 g; alcohol, 38 g;						
reaction time, 1 h; reaction temperature, 523 K. ^b ML means methyl						
levulinate. ^c IPL means isopropyl levulinate, a very small quantity of IPL						
was detected. ^d BL means butyl levulinate.						

Table S2 The specific surface area of ZrO_2 -573 before reaction and after multiple reactions

Cycle	$\frac{S_{BET}}{(m^2g^{-1})}^a$			
fresh	157.2			
1	126.9			
4	129.1			
regeneration ^b	130.7			
^{<i>a</i>} Determined by BET analysis of N_2 adsorption isotherms. ^{<i>b</i>}				
ZrO ₂ -573 calcination at 573 K for 4 h after cycle 4.				

Fig. S1 TGA profiles for (a) ZrO₂-573, (b) ZrO₂-773 and (c) ZrO₂-973.

Fig. S2 TGA and DTA curves of the ZrO₂-573 catalyst.

Fig. S3 X-Ray diffraction (XRD) patterns for ZrO₂-573 before and after reaction. Catalyst was regenerated at 573 K for 4 h.

Fig. S4 SEM images for ZrO_2 -573 after cycle 4 (a) and regeneration (b).

5-propyldihydrofuran-2(3H)-one

5-ethyl-5-methyldihydrofuran-2(3H)-one

5,5-dimethyldihydrofuran-2(3H)-one

3,4,5-trimethyldihydrofuran-2(3H)-one

Scheme S1 By-products derived from GVL were detected by GC-MS analysis.