Supporting Information

Assembly Ultrathin PbBiO₂Br Nanosheets With Enhanced Visible Light Photocatalytic Property

Fang Yuan Xiao, ^a Jun Xing, ^a Long Wu, ^a Zu Peng Chen, ^a Xue Lu Wang ^a & Hua Gui Yang * ^{a,b}

^a Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.

^b Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia

*Corresponding author: Tel.: +86-21-64252127, Fax: +86-21-64252127

E-mail address: hgyang@ecust.edu.cn

Experimental section

Synthesis of PbBiO₂Br nanosheets samples. Assembly ultrathin PbBiO₂Br nanosheets samples were synthesized using a solvothermal method. In a typical procedure, 0.5mmol Bi(NO₃)₃•5H₂O were added into 20mL of ethanol containing stoichiometric amounts of hexadecyl trimethyl ammonium bromide (CTAB) and Pb(NO₃)₂ with continuous stirring, and then 5mL ammonia water were added into this solution. The mixture solution was stirred for at least 30min and then poured into a 50mL Teflon-lined stainless autoclave. The autoclave was heated at 180°C for 12 h under autogenously pressure and then cooled to room temperature. The resulting precipitates were collected and washed with ethanol and deionized water thoroughly and dried at 70°C in air. For comparison, further experiments were performed under different synthesis conditions, and the details are shown in the Table 1.

Table1 The synthesis conditions of reference PbBiO₂Br samples.

Precursor	Sample1(S1)	Sample2 (S2)	Sample3 (S3)	Sample4 (S4)
$Bi(NO_3) \cdot 5H_2O$	1mmol	0.25 mmol	0.5 mmol	0.5 mmol
$Pb(NO_3)_2$	1mmol	0.25 mmol	0.5 mmol	0.5 mmol
CTAB	1mmol	0.25 mmol	0.5 mmol	
KBr				0.5 mmol
solvent	ethanol	ethanol	distilled water	ethanol
ammonia water	5 mL	5 mL	5 mL	5 mL

Synthesis of bulk PbBiO₂Br samples. BiOBr and PbO (AR, 99.5%) were used as starting materials. BiOBr was prepared by a soft chemical method described elsewhere.¹ These two raw materials were mixed in a molar ratio of 1:1. Handing grinding using a mortar and pestle was performed for at least 40 minutes to guarantee a homogeneous mixing and then the mixture was calcined in air at 973 K for 20 h. For comparison, TiO_{2-x}N_x, C₃N₄ and BiOBr are used as the reference photocatalyst, which were obtained according to previously reports.²

- 1. H. Cheng, B. Huang, P. Wang, Z. Wang, Z. Lou, J. Wang, X. Qin, X. Zhang and Y. Dai, *Chemical Communications*, 2011, **47**, 7054-7056.
- 2. Z. Zhao, J. Fan, J. Wang and R. Li, *Catalysis Communications*, 2012, **21**, 32-37.

Photocatalytic Activity Test. The photocatalytic activity experiments of the products for the degradation of methyl orange (MO) were performed at ambient temperature using a 350 W Xe arc lamp with a 420 nm cutoff filter as the light source. The distance between the liquid surface of the suspension and the light source was about 10 cm. Typically, 0.05 g photocatalysts were added into 50 mL of 10 mg L⁻¹ MO aqueous solution in a container. Prior to irradiation, the suspensions were stirred in the dark for 1 h to ensure the adsorption/desorption equilibrium. At the given time intervals, about 5 mL suspension were taken for the following analysis after centrifugation. The MO photodegradation was then analyzed on a UV–vis spectrophotometer (UV-2012PC).

Materials characterizations. The crystal structure was determined using X-ray diffraction (XRD, Bruker D8 Advanced Diffractometer with Cu Kα radiation). The morphology and structure of the samples were characterized by high-resolution transmission electron microscopy and selected area electron diffraction (HRTEM/SAED, JEOL JEM-2100), and field emission scanning electron microscopy (FESEM, HITACHI S4800). The optical absorbance spectra were recorded in a UV/vis spectrophotometer (CARY 500). The photoluminescence (PL) spectra were acquired at room temperature with a UV-VIS-NIR fluorescene spectrophotometer (Fluorolog-3-P) under the ultraviolet excitation of 491 nm.

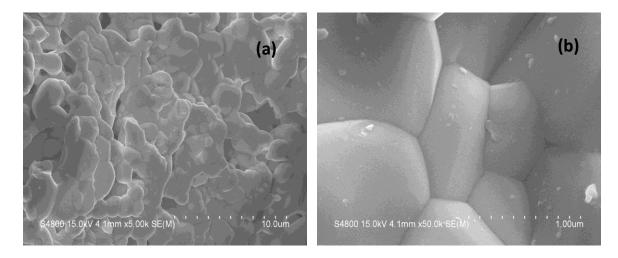


Fig. S1 SEM images of bulk $PbBiO_2Br$ samples.

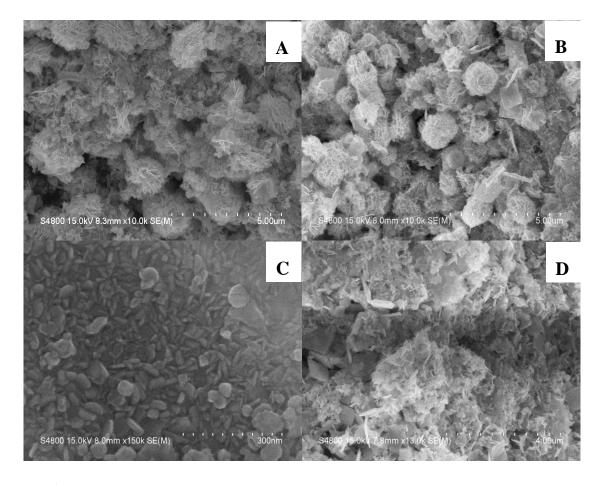
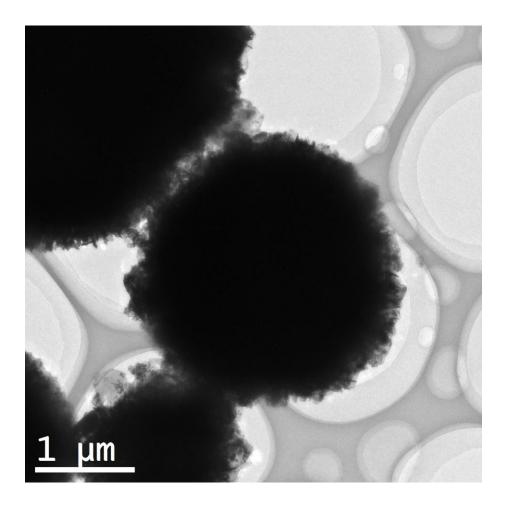



Fig. S2 SEM images of reference PbBiO₂Br samples. A) S1, B) S2, C) S3, D) S4.

 $\textbf{Fig. S3} \ TEM \ image \ of \ PbBiO_2Br \ hierarchical \ microspheres.$

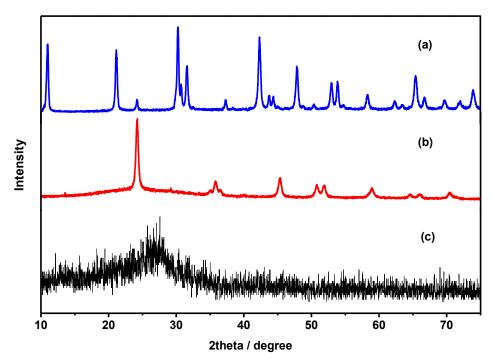
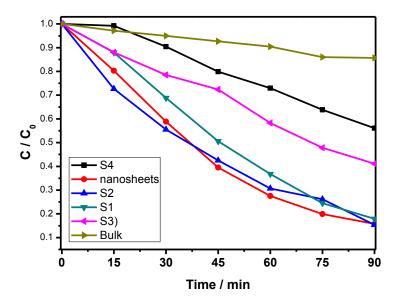



Fig. S4 XRD patterns of (a) BiOBr, (b) $TiO_{2-x}N_x$, and (c) C_3N_4 .

Fig. S5 The MO normalization concentration in the solution with different PbBiO₂Br versus the exposure time under visible light (λ >420 nm).

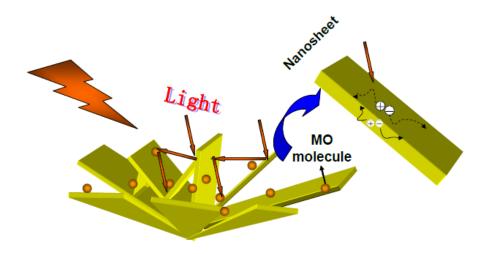


Fig. S6 Schematic illustration of photocatalytic degradation MO on hierarchical $PbBiO_2Br$.

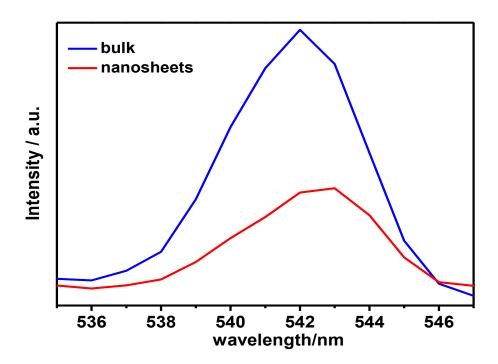


Fig. S7 PL emission spectra of the bulk PbBiO₂Br and PbBiO₂Br nanosheets.