	1 2.6MeCN 0.7MeOH 0.2H ₂ O	2 ⁻ 1.5 MeOH 1.3H ₂ O	3 8.8MeOH 1.4H ₂ O	4 ⁻ 4CH ₃ CN ⁻ 0.25H ₂ O	5.0.75MeOH.4.2H ₂ O
Formula	$C_{83.90}H_{58}N_{17.60}Ni_3O_{8.90}$	$C_{101.50}H_{74.60}N_{18}Ni_6O_{18.80}$	C _{102.80} H ₁₀₅ ClN ₁₈ Ni ₅ O _{27.20}	C ₁₃₀ H ₁₀₄ Cl ₂ N _{29.50} Ni ₇ O _{24.75}	$C_{135.75}H_{108.40}Cl_2N_{27}Ni_8O_{29.95}$
$M_{ m W}$	1631.21	2199.45	2356.85	2953.30	3137.67
Crystal System	Triclinic	Triclinic	Triclinic	Triclinic	Triclinic
Space group	P-1	P-1	P-1	P-1	P-1
a/Å	14.565 (7)	17.036 (7)	15.782 (4)	18.314 (7)	17.608 (5)
<i>b</i> / Å	15.905 (7)	17.422 (7)	17.617 (5)	18.903 (6)	18.430 (5)
c/Å	16.366 (8)	19.400 (8)	19.885 (5)	19.287 (6)	21.084 (6)
α/°	85.02 (5)	64.27 (4)	93.80 (3)	96.06 (3)	81.07 (3)
β/°	88.64 (5)	77.69 (3)	100.35 (3)	106.28 (3)	82.32 (3)
γ/ ⁰	73.41 (5)	63.98 (4)	97.00 (3)	101.89 (3)	83.47 (3)
V/Å ³	3620 (3)	4659 (3)	5376 (2)	6174 (4)	6668 (3)
Z	2	2	2	2	2
<i>T</i> /K	100	100	80	80	100
λ/Å	0.71073	0.71073	0.71073	0.71073	0.71073
$D_{\rm c}/{\rm g~cm}^{-3}$	1.497	1.568	1.456	1.588	1.563
μ (Mo-Ka)/ mm ⁻¹	0.85	1.27	0.97	1.18	1.23
Meas./indep. (R_{int}) refl.	32324 / 16398 (0.244)	35182 / 17223 (0.104)	64959 / 24669 (0.036)	61933 / 28103 (0.096)	66472 / 31375 (0.075)
Obs. refl. $[I \ge 2\sigma(I)]$	3667	5626	16776	12546	12604
wR2	0.219	0.060	0.201	0.191	0.102
R1	0.121	0.056	0.064	0.090	0.061
Goodness of fit on F^2	0.93	0.89	1.03	1.04	1.02
$\Delta \rho_{\rm max,min}/{ m e}{ m \AA}^{-3}$	0.50, -0.48	0.54, -0.59	1.12, -0.91	0.80, -0.56	0.90, -0.61

 Table S1. Crystallographic data for complexes 1-5

Table S2. Selected bond distances (Å) and angles (°) for 1.

Ni1 O13	1.995(7)	Ni2 N23	2.075(9)
Ni1 O21	2.027(8)	Ni2 O14	2.102(7)
Ni1 O12	2.027(8)	Ni2 N24	2.143(10)
Ni1 O1M	2.058(8)	Ni3 N15	2.027(13)
Ni1 N22	2.103(10)	Ni3 O12	2.053(7)
Ni1 O14	2.130(7)	Ni3 N16	2.069(10)
Ni2 O11	1.988(9)	Ni3 O14	2.099(8)
Ni2 O16	2.023(8)	Ni3 N26	2.134(11)
Ni2 O13	2.033(8)	Ni3 N25	2.204(11)
O13 Ni1 O21	89.1(3)	O13 Ni2 O14	80.6(3)
O13 Ni1 O12	93.9(3)	N23 Ni2 O14	165.8(3)
O21 Ni1 O12	161.9(3)	O11 Ni2 N24	88.4(4)
O13 Ni1 O1M	177.2(3)	O16 Ni2 N24	90.9(3)
O21 Ni1 O1M	91.5(3)	O13 Ni2 N24	168.0(3)
O12 Ni1 O1M	84.7(3)	N23 Ni2 N24	106.6(4)
O13 Ni1 N22	91.2(3)	O14 Ni2 N24	87.5(3)
O21 Ni1 N22	105.1(4)	N15 Ni3 O12	93.2(5)
O12 Ni1 N22	92.7(4)	N15 Ni3 N16	175.8(5)
O1M Ni1 N22	91.2(3)	O12 Ni3 N16	89.1(3)
O13 Ni1 O14	80.7(3)	N15 Ni3 O14	92.2(4)
O21 Ni1 O14	86.4(3)	O12 Ni3 O14	76.7(3)
O12 Ni1 O14	76.5(3)	N16 Ni3 O14	84.9(4)
O1M Ni1 O14	96.6(3)	N15 Ni3 N26	99.9(5)
N22 Ni1 O14	166.0(4)	O12 Ni3 N26	96.2(4)
O11 Ni2 O16	178.4(4)	N16 Ni3 N26	83.2(4)
O11 Ni2 O13	92.5(3)	O14 Ni3 N26	166.3(3)
O16 Ni2 O13	88.6(3)	N15 Ni3 N25	81.7(5)
O11 Ni2 N23	94.1(4)	O12 Ni3 N25	170.5(4)
O16 Ni2 N23	84.9(4)	N16 Ni3 N25	95.5(4)
O13 Ni2 N23	85.3(3)	O14 Ni3 N25	95.4(3)
O11 Ni2 O14	88.2(3)	N26 Ni3 N25	92.5(4)
O16 Ni2 O14	93.1(3)		

Table S3. Selected bond distances (Å) and angles (°) for 2.

			
Ni1 O1B	1.992(4)	Ni4 O13*	1.975(16)
Nil OlA	2.011(4)	Ni4 O1A	1.990(4)
Ni1 O19	2.052(4)	Ni4 O27	2.032(4)
Ni1 O12	2.084(4)	Ni4 O29	2.036(4)
Ni1 O15	2.090(4)	Ni4 N23	2.088(6)
Ni1 O18	2.099(4)	Ni4 O18	2.247(5)
Ni2 O15	2.057(4)	Ni5 O28	1.988(4)
Ni2 O12	2.072(4)	Ni5 O14	2.002(4)
Ni2 N11	2.114(5)	Ni5 O1B	2.004(4)
Ni2 N21	2.129(5)	Ni5 O01	2.055(4)
Ni2 N16	2.138(5)	Ni5 N24	2.084(5)
Ni2 N26	2.171(5)	Ni5 O19	2.133(4)
Ni3 O13	1.899(16)	Ni5 Ni6	2.987(2)
Ni3 O16	2.017(4)	Ni6 O11	2.024(4)
Ni3 O1A	2.030(4)	Ni6 O1B	2.034(4)
Ni3 O17	2.035(4)	Ni6 O02	2.039(4)
Ni3 N12	2.046(6)	Ni6 N15	2.041(6)
Ni3 N22	2.185(6)	Ni6 O14	2.061(4)
Ni3 O131*	2.21(3)	Ni6 N25	2.167(6)
Ni4 N131*	1.96(3)		
O1B Ni1 O1A	176.93(18)	O13* Ni4 O29	164.5(4)
O1B Ni1 O19	82.06(17)	O1A Ni4 O29	90.91(17)
01A Ni1 019	96.87(17)	O27 Ni4 O29	98.03(18)
O1B Ni1 O12	89.57(16)	N131 Ni4 N23	69.1(5)
O1A Ni1 O12	91.54(17)	O13 Ni4 N23	96.4(5)
O19 Ni1 O12	171.55(17)	O1A Ni4 N23	169.7(3)
O1B Ni1 O15	92.49(17)	O27 Ni4 N23	90.7(2)
01A Ni1 015	90.48(18)	O29 Ni4 N23	98.5(3)
019 Ni1 015	95.74(16)	N131 Ni4 O18	80.7(5)
012 Ni1 015	83.36(15)	O13 Ni4 O18	83.7(4)
O1B Ni1 O18	93.23(17)	O1A Ni4 O18	80.53(17)
O1A Ni1 O18	83.79(18)	O27 Ni4 O18	168.63(16)
O19 Ni1 O18	84.20(16)	O29 Ni4 O18	90.72(17)
012 Ni1 018	97.55(16)	N23 Ni4 O18	95.2(2)
015 Ni1 018	174.22(18)	O28 Ni5 O14	173.53(17)
015 Ni2 012	84.48(16)	O28 Ni5 O1B	89.46(16)
015 Ni2 N11	97.24(19)	O14 Ni5 O1B	84.26(16)
012 Ni2 N11	85.87(17)	O28 Ni5 O01	94.15(18)
015 Ni2 N21	174.32(17)	O14 Ni5 O01	87.61(18)
012 Ni2 N21	89.95(17)	O1B Ni5 O01	91.41(17)
N11 Ni2 N21	83.4(2)	O28 Ni5 N24	94.22(19)
015 Ni2 N16	86.92(17)	014 Ni5 N24	92.11(19)
012 Ni2 N16	98.9(2)	01B Ni5 N24	175.82(19)
N11 Ni2 N16	173.97(19)	001 Ni5 N24	86.36(19)
N21 Ni2 N16	92.9(2)	O28 Ni5 O19	92.87(18)
015 Ni2 N26	91.77(16)	014 Ni5 019	84.47(18)
012 Ni2 N26	176.13(17)	01B Ni5 019	79.77(16)
N11 Ni2 N26	93.7(2)	001 Ni5 019	168.67(16)
N21 Ni2 N26	93 81(17)	N24 Ni5 O19	101 98(18)
N16 Ni2 N26	81.8(2)	O28 Ni5 Ni6	130.78(12)

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

O13 Ni3 O16	165.7(4)	O14 Ni5 Ni6	43.47(12)
O13 Ni3 O1A	74.6(4)	O1B Ni5 Ni6	42.68(11)
016 Ni3 O1A	93.06(17)	O01 Ni5 Ni6	79.43(12)
O13 Ni3 O17	81.0(4)	N24 Ni5 Ni6	133.28(15)
O16 Ni3 O17	92.61(18)	019 Ni5 Ni6	89.25(12)
O1A Ni3 O17	92.59(17)	O11 Ni6 O1B	93.65(15)
O13 Ni3 N12	93.7(4)	O11 Ni6 O02	90.93(17)
O16 Ni3 N12	92.97(19)	O1B Ni6 O02	92.93(17)
O1A Ni3 N12	87.7(2)	O11 Ni6 N15	90.22(18)
O17 Ni3 N12	174.39(19)	O1B Ni6 N15	88.1(2)
O13 Ni3 N22	98.6(5)	O02 Ni6 N15	178.4(2)
O16 Ni3 N22	95.03(17)	O11 Ni6 O14	175.00(16)
O1A Ni3 N22	165.3(2)	O1B Ni6 O14	82.01(16)
O17 Ni3 N22	99.3(2)	O02 Ni6 O14	86.83(17)
N12 Ni3 N22	79.7(2)	N15 Ni6 O14	92.11(18)
O16 Ni3 O131*	169.7(10)	O11 Ni6 N25	95.19(18)
O1A Ni3 O131*	96.8(9)	O1B Ni6 N25	165.2(2)
O17 Ni3 O131*	89.8(9)	O02 Ni6 N25	98.7(2)
N12 Ni3 O131*	84.6(9)	N15 Ni6 N25	80.1(3)
N22 Ni3 O131*	74.7(10)	O14 Ni6 N25	89.57(19)
N131 Ni4 O1A	100.9(5)	011 Ni6 Ni5	133.25(11)
O13 Ni4 O1A	73.9(4)	O1B Ni6 Ni5	41.90(11)
N131 Ni4 O27	92.4(5)	002 Ni6 Ni5	80.33(13)
O13 Ni4 O27	85.9(4)	N15 Ni6 Ni5	99.67(15)
O1A Ni4 O27	92.01(17)	O14 Ni6 Ni5	41.92(12)
N131* Ni4 O29	164.0(6)	N25 Ni6 Ni5	131.45(15)

*- atoms with asterisk have occupation 0.5

Table S4. Selected bond distances (Å) and angles (°) for 3.

F			
Ni1 O16	2.013(3)	Ni3 N14	2.066(4)
Ni1 O11	2.041(3)	Ni3 N24	2.244(4)
Ni1 O1	2.050(3)	Ni3 N22	2.325(4)
Ni1 O1W	2.091(3)	Ni4 O3M	2.026(3)
Ni1 O1M	2.108(3)	Ni4 O14	2.033(3)
Ni1 N21	2.121(4)	Ni4 O4M	2.076(3)
Ni2 O11	2.039(3)	Ni4 O2W	2.094(3)
Ni2 O1	2.042(3)	Ni4 N15	2.095(4)
Ni2 O2M	2.056(3)	Ni4 N25	2.192(4)
Ni2 012	2,066(3)	Ni5 013	2.026(3)
Ni2 N13	2.000(3)	Ni5 01	033(3)
Ni2 N23	2.189(4)	Ni5 015	2 047(3)
Ni3 O3M	2.000(3)	Ni5 N16	2.075(4)
Ni3 O2M	2.022(3)	Ni5 O2W	2.146(3)
Ni3 N12	2.047(4)	Ni5 N26	2.206(4)
1115 1112	2.017(1)	1115 1120	2.200(1)
016 Ni1 011	96 43(13)	O3M Ni3 N22	97 24(13)
016 Ni1 01	94 18(12)	02M Ni3 N22	164 17(12)
011 Ni1 01	78 33(12)	N12 Ni3 N22	78 75(14)
016 Ni1 01W	175 30(13)	N12 N13 N22	95 40(14)
011 Ni1 01W	88 15(12)	N24 Ni3 N22	76 78(14)
O1 Ni1 O1W	87 78(12)	O3M Ni4 O14	91 19(12)
016 Ni1 01M	86 56(13)	03M Ni4 04M	174 92(13)
011 Ni1 01M	167.84(12)	014 Ni4 04M	89 18(14)
OI Nil OIM	89 72(12)	O3M Ni4 O2W	85 68(12)
OIW Nil OIM	89 18(12)	014 Ni4 02W	96.05(12)
016 Ni1 N21	89 17(13)	O4M Ni4 O2W	89 25(13)
011 Ni1 N21	89.87(14)	O3M Ni4 N15	90.46(13)
01 Ni1 N21	168.01(14)	014 Ni4 N15	175.38(14)
OIW Nil N21	89.78(13)	O4M Ni4 N15	89.57(14)
O1M Ni1 N21	101.99(14)	O2W Ni4 N15	88.37(13)
O11 Ni2 O1	78.55(12)	O3M Ni4 N25	98.98(13)
O11 Ni2 O2M	165.96(12)	O14 Ni4 N25	94.89(14)
O1 Ni2 O2M	88.71(12)	O4M Ni4 N25	86.03(14)
O11 Ni2 O12	84.97(12)	O2W Ni4 N25	168.01(13)
O1 Ni2 O12	96.55(12)	N15 Ni4 N25	80.59(15)
O2M Ni2 O12	90.72(12)	O13 Ni5 O1	96.00(12)
O11 Ni2 N13	95.74(13)	O13 Ni5 O15	173.48(11)
O1 Ni2 N13	88.59(13)	O1 Ni5 O15	89.69(12)
O2M Ni2 N13	89.75(13)	O13 Ni5 N16	87.70(14)
O12 Ni2 N13	174.84(13)	O1 Ni5 N16	88.04(13)
O11 Ni2 N23	89.79(13)	O15 Ni5 N16	89.31(14)
O1 Ni2 N23	163.52(12)	O13 Ni5 O2W	90.03(12)
O2M Ni2 N23	103.86(13)	O1 Ni5 O2W	85.50(11)
O12 Ni2 N23	93.96(13)	O15 Ni5 O2W	93.60(12)
N13 Ni2 N23	80.95(14)	N16 Ni5 O2W	172.89(12)
O3M Ni3 O2M	93.35(12)	O13 Ni5 N26	83.27(13)
O3M Ni3 N12	96.32(13)	O1 Ni5 N26	169.52(13)
O2M Ni3 N12	88.45(13)	O15 Ni5 N26	90.56(13)
O3M Ni3 N14	87.13(14)	N16 Ni5 N26	81.48(14)
O2M Ni3 N14	96.85(13)	O2W Ni5 N26	104.95(13)
N12 Ni3 N14	173.51(14)	N11 O11 Ni2	116.0(2)
O3M Ni3 N24	165.16(13)	N11 O11 Ni1	128.7(3)
O2M Ni3 N24	95.52(13)	Ni2 O11 Ni1	101.19(13)
N12 Ni3 N24	95.79(14)	C11 N21 Ni1	129.4(3)
N14 Ni3 N24	80.03(14)		

Table S5. Selected bond distances (Å) and angles (°) for 4.

Ni1 O29	2.039(4)	Ni4 N14	2.101(5)
Ni1 O1	2.045(5)	Ni4 N24	2.277(6)
Ni1 O110	2.059(5)	Ni4 N25	2.306(5)
Ni1 O13	2.073(4)	Ni5 O14	2.019(5)
Ni1 O10	2.074(4)	Ni5 O16	2.031(4)
Ni1 O17	2.154(4)	Ni5 N10	2.060(5)
Ni2 N11	2.052(6)	Ni5 N26	2.095(5)
Ni2 O13	2.070(4)	Ni5 O10	2.139(4)
Ni2 N12	2.076(6)	Ni5 O18	2.192(5)
Ni2 N21	2.157(5)	Ni6 N1A	1.990(12)
Ni2 O17	2.183(4)	Ni6 N18	2.043(6)
Ni2 N22	2.216(5)	Ni6 O210	2.061(4)
Ni3 O15	2.024(4)	Ni6 O29	2.065(4)
Ni3 O19	2.035(5)	Ni6 N19	2.080(5)
Ni3 O11	2.038(4)	Ni6 O18	2.106(5)
Ni3 O1	2.081(4)	Ni7 O12	1.998(5)
Ni3 N23	2.092(5)	Ni7 O110	2.058(4)
Ni3 O13	2.092(5)	Ni7 O17	2.069(4)
Ni4 N15	2.034(5)	Ni7 N110	2.074(6)
Ni4 O1	2.059(4)	Ni7 O20	2.076(4)
Ni4 O16	2.087(5)	Ni7 N27	2.078(5)
029 Ni1 O1	95.07(17)	016 Ni4 N25	80.56(19)
029 Ni1 0110	90.27(18)	N14 Ni4 N25	96.1(2)
01 Ni1 0110	174 65(16)	N24 Ni4 N25	91 10(19)
029 Ni1 013	92,36(16)	014 Ni5 016	92.10(18)
01 Ni1 013	84.06(18)	014 Ni5 N10	88 7(2)
0110 Ni1 013	95 47(18)	016 Ni5 N10	176 9(2)
029 Ni1 010	95.47(16)	014 Ni5 N26	89 5(2)
01 Ni1 010	93 33(18)	016 Ni5 N26	86 84(19)
0110 Ni1 O10	86.41(18)	N10 Ni5 N26	96.2(2)
013 Ni1 010	171.94(17)	014 Ni5 010	88.83(18)
029 Ni1 017	165 83(18)	016 Ni5 010	97 44(17)
01 Ni1 017	93.12(17)	N10 Ni5 O10	79.59(18)
0110 Ni1 017	81 59(17)	N26 Ni5 O10	175 46(18)
013 Nil 017	77.00(16)	014 Ni5 018	177 27(17)
010 Ni1 017	95 57(16)	016 Ni5 018	87 58(17)
N11 Ni2 O13	88.0(2)	N10 Ni5 O18	91 5(2)
N11 Ni2 N12	176.0(2)	N26 Ni5 O18	93 2(2)
013 Ni2 N12	95 3(2)	010 Ni5 018	88 52(17)
N11 Ni2 N21	82.8(2)	N1A Ni6 N18	90.8(4)
013 Ni2 N21	163 82(19)	N1A Ni6 0210	81 1(3)
N12 Ni2 N21	93 4(2)	N18 Ni6 O210	86.0(2)
N12 N12 N21	89 70(18)	N10 Ni6 0210	92 4(4)
013 Ni2 017	76 43(15)	N18 Ni6 029	1757(2)
N12 Ni2 O17	88 8(2)	0210 Ni6 029	97 27(17)
N21 Nj2 017	90.16(17)	N1A Ni6 N10	91 A(A)
N11 Ni2 N22	101 3(2)	N18 Ni6 N19	98 6(2)
013 Ni2 N22	96 53(17)	O210 Ni6 N19	171 3(2)
N12 Ni2 N22	80.7(2)	0210 Ni6 N19	78 49(19)
N21 Ni2 N22	08.33(10)	N14 Ni6 018	167 0(4)
1121 1112 1122	70.33(19)		107.0(4)

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

O17 Ni2 N22	166.8(2)	N18 Ni6 O18	80.8(2)
O15 Ni3 O19	81.31(19)	O210 Ni6 O18	88.45(19)
O15 Ni3 O11	99.05(18)	O29 Ni6 O18	96.52(19)
O19 Ni3 O11	178.52(17)	N19 Ni6 O18	99.5(2)
O15 Ni3 O1	94.75(16)	O12 Ni7 O110	91.88(17)
O19 Ni3 O1	93.06(17)	O12 Ni7 O17	98.36(19)
O11 Ni3 O1	85.49(16)	O110 Ni7 O17	83.72(17)
O15 Ni3 N23	94.01(19)	O12 Ni7 N110	87.7(2)
O19 Ni3 N23	87.58(19)	O110 Ni7 N110	82.73(19)
O11 Ni3 N23	93.82(18)	O17 Ni7 N110	165.30(18)
O1 Ni3 N23	171.2(2)	O12 Ni7 O20	173.10(19)
O15 Ni3 O13	165.73(18)	O110 Ni7 O20	83.14(16)
O19 Ni3 O13	84.79(18)	O17 Ni7 O20	85.89(17)
O11 Ni3 O13	94.76(17)	N110 Ni7 O20	86.9(2)
O1 Ni3 O13	82.71(16)	O12 Ni7 N27	95.2(2)
N23 Ni3 O13	88.6(2)	O110 Ni7 N27	169.3(2)
N15 Ni4 O1	88.57(19)	O17 Ni7 N27	87.4(2)
N15 Ni4 O16	103.39(19)	N110 Ni7 N27	105.4(2)
O1 Ni4 O16	89.72(17)	O20 Ni7 N27	90.39(19)
N15 Ni4 N14	169.3(3)	Ni1 O1 Ni4	134.6(2)
O1 Ni4 N14	97.08(19)	Ni1 O1 Ni3	94.01(17)
O16 Ni4 N14	85.8(2)	Ni4 O1 Ni3	111.94(18)
N15 Ni4 N24	91.3(2)	C10 O10 Ni1	121.8(4)
O1 Ni4 N24	102.01(17)	C10 O10 Ni5	115.1(4)
O16 Ni4 N24	161.47(18)	Ni1 O10 Ni5	123.00(19)
N14 Ni4 N24	78.6(2)	C10 O20 Ni7	134.3(4)
N15 Ni4 N25	80.3(2)	C20 N10 Ni5	114.2(4)
O1 Ni4 N25	163.00(18)		

Table S6. Selected bond distances (Å) and angles (°) for 5.

Ni1 O1A	2.002(3)	Ni4 N23	2.220(4)
Ni1 O2M	2.025(3)	Ni5 O1M	2.037(3)
Ni1 O1M	2.053(3)	Ni5 O2M	2.038(3)
Ni1 O14	2.055(3)	Ni5 O1B	2.053(3)
Ni1 O1C	2.058(3)	Ni5 O11	2.067(3)
Ni1 O12	2.106(3)	Ni5 O3M	2.086(3)
Ni2 O17	1.982(3)	Ni5 O16	2.113(3)
Ni2 O1M	2.043(3)	Ni6 O13	1.996(3)
Ni2 O1C	2.077(3)	Ni6 N14	2.006(4)
Ni2 N1C	2.102(4)	Ni6 O2M	2.038(3)
Ni2 O3M	2.117(3)	Ni6 O2B	2.053(3)
Ni2 O2A	2.161(4)	Ni6 O11	2.160(3)
Ni3 O15*	2.000(7)	Ni6 N24	2.241(4)
Ni3 O10**	2.063(11)	Ni7 O18	1.983(3)
Ni3 O1A	2.069(3)	Ni7 N1B	2.076(4)
Ni3 N22	2.076(4)	Ni7 O16	2.090(3)
Ni3 N1A	2.101(4)	Ni7 O1B	2.106(3)
Ni3 O12	2.103(3)	Ni7 N26	2.116(4)
Ni3 O2C	2.124(3)	Ni7 N11	2.208(4)
Ni4 N15*	2.043(10)	Ni8 N17	2.059(4)
Ni4 O12	2.065(3)	Ni8 O3M	2.060(3)
Ni4 O14	2.102(3)	Ni8 O16	2.100(3)
Ni4 N10**	2.112(16)	Ni8 N18	2.106(4)
Ni4 N13	2.124(4)	Ni8 N28	2.135(4)
Ni4 N25*	2.154(9)	Ni8 N27	2.324(4)
Ni4 N20**	2.202(14)		
O1A Ni1 O2M	173.29(13)	N20 Ni4 N23	99.1(5)
O1A Ni1 O1M	92.93(13)	O1M Ni5 O2M	80.45(12)
O2M Ni1 O1M	80.37(12)	O1M Ni5 O1B	171.41(12)
O1A Ni1 O14	87.75(14)	O2M Ni5 O1B	91.09(12)
O2M Ni1 O14	93.88(13)	O1M Ni5 O11	96.77(12)
O1M Ni1 O14	101.35(12)	O2M Ni5 O11	89.69(12)
01A Ni1 01C	86.39(14)	O1B Ni5 O11	84.60(12)
O2M Ni1 O1C	92.80(13)	O1M Ni5 O3M	83.54(13)
O1M Ni1 O1C	86.36(12)	O2M Ni5 O3M	104.70(12)
014 Ni1 01C	170.55(12)	O1B Ni5 O3M	97.27(13)
O1A Ni1 O12	80.96(13)	O11 Ni5 O3M	165.41(12)
O2M Ni1 O12	105.72(12)	O1M Ni5 O16	106.57(12)
O1M Ni1 O12	173.46(13)	O2M Ni5 O16	170.17(12)
O14 Ni1 O12	80.83(13)	O1B Ni5 O16	82.01(13)
O1C Ni1 O12	90.92(13)	O11 Ni5 O16	82.73(12)
017 Ni2 O1M	97.65(13)	O3M Ni5 O16	83.21(12)
017 Ni2 O1C	169.35(12)	O13 Ni6 N14	92.31(14)
O1M Ni2 O1C	86.12(12)	O13 Ni6 O2M	93.58(12)
017 Ni2 N1C	96.36(14)	N14 Ni6 O2M	89.27(14)
O1M Ni2 N1C	165.00(13)	O13 Ni6 O2B	88.82(13)
O1C Ni2 N1C	79.15(14)	N14 Ni6 O2B	178.29(14)
O17 Ni2 O3M	94.03(12)	O2M Ni6 O2B	91.95(12)
O1M Ni2 O3M	82.63(12)	O13 Ni6 O11	179.25(12)
O1C Ni2 O3M	96.34(12)	N14 Ni6 O11	87.84(13)

Electronic Supplementary Material (ESI) for RSC Advances This journal is The Royal Society of Chemistry 2013

N1C Ni2 O3M	101.71(15)	O2M Ni6 O11	87.16(12)
O17 Ni2 O2A	85.60(13)	O2B Ni6 O11	91.01(12)
O1M Ni2 O2A	88.23(13)	O13 Ni6 N24	96.88(14)
O1C Ni2 O2A	84.57(13)	N14 Ni6 N24	79.95(15)
N1C Ni2 O2A	87.54(15)	O2M Ni6 N24	165.24(14)
O3M Ni2 O2A	170.73(13)	O2B Ni6 N24	98.64(14)
O15 Ni3 O10	11.4(4)	O11 Ni6 N24	82.43(13)
O15 Ni3 O1A	96.7(2)	O13 Ni6 Ni5	135.94(9)
010 Ni3 O1A	86.3(3)	N14 Ni6 Ni5	97.18(11)
015 Ni3 N22	90.4(2)	O2M Ni6 Ni5	43.94(8)
O10 Ni3 N22	101.5(3)	O2B Ni6 Ni5	82.88(9)
01A Ni3 N22	168.02(16)	O11 Ni6 Ni5	44.74(8)
O15 Ni3 N1A	92.3(2)	N24 Ni6 Ni5	127.12(10)
010 Ni3 N1A	86.3(3)	O18 Ni7 N1B	89.77(14)
O1A Ni3 N1A	80.88(15)	O18 Ni7 O16	91.97(13)
N22 Ni3 N1A	108.51(17)	N1B Ni7 O16	162.44(13)
O15 Ni3 O12	90.7(2)	O18 Ni7 O1B	93.68(12)
O10 Ni3 O12	93.1(3)	N1B Ni7 O1B	81.13(13)
O1A Ni3 O12	79.52(13)	O16 Ni7 O1B	81.32(12)
N22 Ni3 O12	90.85(16)	O18 Ni7 N26	91.88(14)
N1A Ni3 O12	160.39(15)	N1B Ni7 N26	107.70(15)
O15 Ni3 O2C	177.1(2)	O16 Ni7 N26	89.72(14)
O10 Ni3 O2C	171.5(3)	O1B Ni7 N26	169.60(15)
O1A Ni3 O2C	85.74(13)	O18 Ni7 N11	169.58(14)
N22 Ni3 O2C	86.88(15)	N1B Ni7 N11	95.68(15)
N1A Ni3 O2C	89.59(15)	O16 Ni7 N11	80.17(13)
O12 Ni3 O2C	88.32(13)	O1B Ni7 N11	78.45(13)
N15* Ni4 O12	85.7(3)	N26 Ni7 N11	94.90(15)
N15* Ni4 O14	89.6(4)	N17 Ni8 O3M	88.41(14)
O12 Ni4 O14	80.70(13)	N17 Ni8 O16	98.48(15)
O12 Ni4 N10**	86.5(4)	O3M Ni8 O16	84.17(12)
N15* Ni4 N13	172.7(4)	N17 Ni8 N18	167.95(16)
O12 Ni4 N13	96.67(15)	O3M Ni8 N18	103.57(14)
O14 Ni4 N13	97.52(14)	O16 Ni8 N18	84.23(16)
N10** Ni4 N13	176.8(4)	N17 Ni8 N28	96.51(16)
N15* Ni4 N25*	83.6(3)	O3M Ni8 N28	97.22(13)
O12 Ni4 N25	168.7(2)	O16 Ni8 N28	164.98(15)
O14 Ni4 N25	96.0(3)	N18 Ni8 N28	80.90(17)
N13 Ni4 N25	94.4(2)	N17 Ni8 N27	79.57(15)
O12 Ni4 N20**	164.9(4)	O3M Ni8 N27	165.05(14)
O14 Ni4 N20**	89.2(5)	O16 Ni8 N27	88.80(13)
N10** Ni4 N20**	81.2(5)	N18 Ni8 N27	88.78(15)
N13 Ni4 N20 **	95.7(4)	N28 Ni8 N27	92.98(14)
N15 Ni4 N23	91.7(4)	N11 O11 Ni5	112.3(2)
O12 Ni4 N23	91.22(14)	N11 O11 Ni6	114.5(2)
O14 Ni4 N23	171.69(14)	Ni5 O11 Ni6	87.91(11)
N10 Ni4 N23	98.2(6)	C141 N11 Ni7	122.6(3)
N13 Ni4 N23	81.42(15)	O11 N11 Ni7	114.1(3)
N25 Ni4 N23	92.3(3)		

*,** - atoms with asterisk have occupation 0.636 and 0.364, respectively.