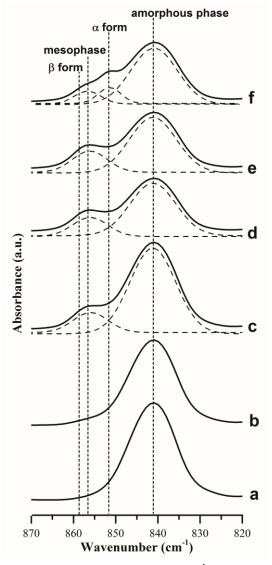
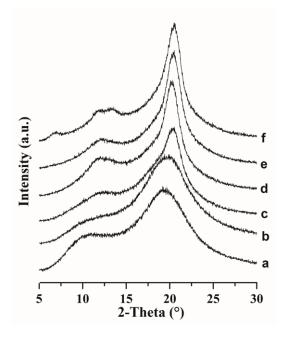
## **Electronic Supporting Information**

## A Convenient Quantitative Study of Polymer Mesophase Induced by Isothermal Annealing

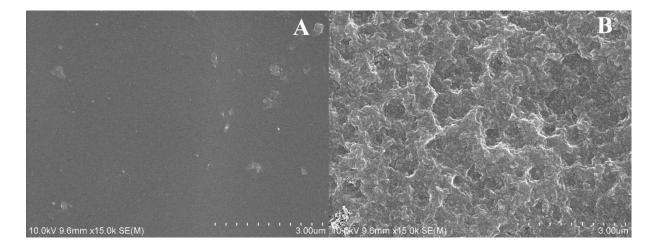
Yang Feng,<sup>a,b</sup> Guangming Chen<sup>\*a</sup> and Jianjun Wang<sup>\*a</sup>


<sup>a</sup> Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China. E-mail: chengm@iccas.ac.cn (G. Chen), wangj220@iccas.ac.cn (J. Wang).
<sup>b</sup> University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

## **Experimental Details**


**Materials and Samples.** The sPS was kindly provided by Japan Idemitsu Kosan Co. Ltd., with a commercial name of XAREC SP130. Its syndiotacticity, [rr], is larger than 97%. The amorphous films were obtained by pressing the molten sPS manually on a homemade heating stage followed by rapid quenching in cold water. Both FT-IR spectroscopic and XRD results confirmed no sign of crystalline phase. These amorphous film samples have different sizes and thicknesses, which makes the results convincing and widely applicable to common film samples.

**Characterizations.** FT-IR spectra were collected on a Bruker TENSOR 27 spectrometer at 2 cm<sup>-1</sup> resolution with 64 scans, and the wavenumber range was 1400–800 cm<sup>-1</sup>. During the measurements, a heating cell mounted with the sPS film sample was equipped into the spectrometer, which ascertained continuous observation of *in situ* changes of characteristic bands at a fixed film position. Curve fittings were performed to quantify band positions and the corresponding band areas. The FT-IR spectra profile in the region of 870–820 cm<sup>-1</sup> was separated into several components using the software of PeakFit v4.12, where the bands were assumed to be of Gaussian function with a linear baseline. The fit standard error was 0.1-0.25%.


XRD measurements were conducted on a Rigaku D/max 2500 diffractometer, using Cu K $\alpha$  radiation ( $\lambda = 0.15418$  nm). The scanning 2-theta angle was between 5° and 30°, and the scanning rate was 2° min<sup>-1</sup>.



**Fig. S1** FT-IR spectra in the frequency range of 870–820 cm<sup>-1</sup> for sPS films (a) before and (b–f) after being isothermally annealed at different temperatures: (b) 110 °C for 12 h, (c) 120 °C for 6 h, (d) 130 °C for 6 h, (e) 140 °C for 6 h, (f) 150 °C for 1 h.



**Fig. S2** XRD patterns of sPS films (a) before and (b–f) after being isothermally annealed at different temperatures: (b) 110 °C for 12 h, (c) 120 °C for 6 h, (d) 130 °C for 6 h, (e) 140 °C for 6 h, (f) 150 °C for 1 h.



**Fig. S3** SEM images of sPS films after etching treatment. (A) amorphous film; (B) film containing mesomorphic phase. Due to the existence of mesophase, film (B) showed relatively rough surface; in contrast, the surface of film (A) was relatively smooth because of the homogeneous etching effect.

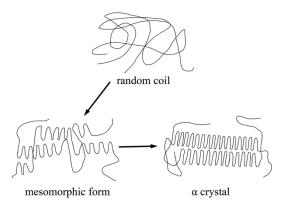



Fig. S4 Schematic illustration of sPS phase transition of amorphous  $\rightarrow$  mesomorphic form  $\rightarrow \alpha$  crystalline state.<sup>1,2,3</sup>

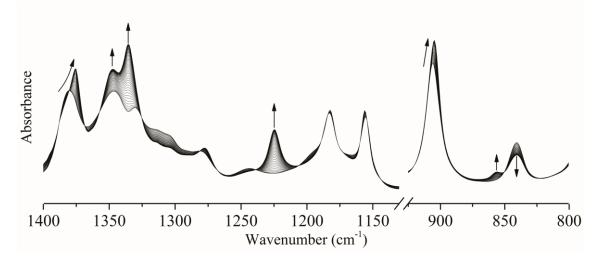
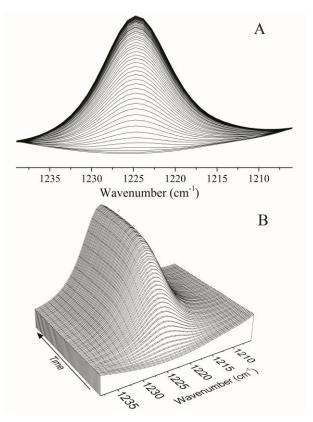




Fig. S5 In situ FT-IR spectra of sPS film annealed at 120 °C for 360 min (time interval: 5 min).



**Fig. S6** *In situ* FT-IR absorption spectra for the band at 1224 cm<sup>-1</sup> (amorphous sPS film was annealed at 120 °C for 360 min). (A) original FT-IR spectra; (B) time-dependent "3D" spectra.

| Time (min) | $A_{841}$ | $A_{856}$ | $%(A_{856})$ | a <sub>meso</sub> |
|------------|-----------|-----------|--------------|-------------------|
| 105        | 2.821     | 0.358     | 11.26        | 0.360             |
| 120        | 2.729     | 0.397     | 12.69        | 0.366             |
| 135        | 2.652     | 0.418     | 13.62        | 0.359             |
| 150        | 2.588     | 0.440     | 14.53        | 0.359             |
| 165        | 2.545     | 0.451     | 15.05        | 0.355             |
| 180        | 2.517     | 0.465     | 15.59        | 0.358             |
| 195        | 2.513     | 0.468     | 15.71        | 0.359             |
| 210        | 2.506     | 0.483     | 16.14        | 0.369             |
| 225        | 2.497     | 0.487     | 16.31        | 0.370             |
| 240        | 2.487     | 0.487     | 16.37        | 0.367             |
| 255        | 2.473     | 0.488     | 16.49        | 0.364             |
| 270        | 2.460     | 0.486     | 16.50        | 0.359             |
| 285        | 2.462     | 0.493     | 16.67        | 0.364             |
| 300        | 2.466     | 0.500     | 16.85        | 0.371             |
| 315        | 2.473     | 0.502     | 16.88        | 0.374             |
| 330        | 2.456     | 0.506     | 17.09        | 0.372             |
| 345        | 2.449     | 0.496     | 16.84        | 0.363             |
| 360        | 2.439     | 0.494     | 16.84        | 0.359             |
| .*         |           |           |              |                   |

Table S1. Curve fitting results and the calculated absorptivity ratios (120 °C)

 $A_{841}^*$  = 3.815;  $a_{meso}$  (average) = 0.364 ± 0.006

**Table S2.** The calculated fraction of mesophase corresponding to Table S1 (Equation 3 was applied with  $a_{meso} = 0.360$ )

| Time (min) | F <sub>meso</sub> | Time (min) | F <sub>meso</sub> |
|------------|-------------------|------------|-------------------|
| 105        | 26.1              | 240        | 35.2              |
| 120        | 28.8              | 255        | 35.4              |
| 135        | 30.5              | 270        | 35.4              |
| 150        | 32.1              | 285        | 35.7              |
| 165        | 33.0              | 300        | 36.0              |
| 180        | 33.9              | 315        | 36.1              |
| 195        | 34.1              | 330        | 36.4              |
| 210        | 34.9              | 345        | 36.0              |
| 225        | 35.1              | 360        | 36.0              |
|            |                   |            |                   |

 $a_{\text{meso}} = 0.360$ 

## References

1. V. Petraccone, F. Auriemma, F. D. Poggetto, C. De Rosa, G. Guerra and P. Corradini, *Die Makromol. Chem.*, 1993, **194**, 1335-1345.

2. F. Auriemma, V. Petraccone, F. Dalpoggetto, C. De Rosa, G. Guerra, C. Manfredi and P. Corradini, *Macromolecules*, 1993, **26**, 3772-3777.

3. Y. S. Sun, E. M. Woo and M. C. Wu, *Macromolecules*, 2003, 36, 8415-8425.