Supporting Information

Metal triflate-Catalyzed Cyclization of Arylvinylcarbinols: Formal Synthesis of (±)-Dichronaone and (±)-Taiwaniaquinone H

Badrinath N. Kakde, Subhadip De, Dhananjay Dey, and Alakesh Bisai*

Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh - 462 023 India

E-mail: alakesh@iiserb.ac.in

Table of Contents

Materials and Method	S2
Scheme 1: Synthesis of arylvinylcarbinols $(2\mathbf{a}-\mathbf{i})$ of β -cyclocitral	S3-S4
Scheme 2: Synthesis of arylvinylcarbinols (2 j) of β -cyclocitral	S7-S8
Scheme 3: Synthesis of arylvinylcarbinols $(2\mathbf{k}-\mathbf{m})$ of β -cyclocitral	S8-S9
References and Notes	S9
Table 1: Optimization of cyclization reaction	S12
General procedure for metal triflate catalyzed cyclization	S12-S13
Figure 1: Substrates scope using arylvinylcarbinols (2a-i)	S13
Scheme 4: Further substrates scope using arylvinylcarbinols (2j)	S17
Scheme 5: Substrates scope using arylvinylcarbinols (2k-m)	S18
Scheme 6: Hydrogenation of carbotricycle 30	S21
Scheme 7: Formal total synthesis of (\pm) -dichroanone $(1a)$ and (\pm) -taiwaniaquinone H $(1b)$	S22
¹ H-NMR, ¹³ C-NMR and Mass Spectra	S24-S128
CIF files and X-Ray structure of compound 30 and 8	S129-S133

Materials and Methods

Unless otherwise stated, reactions were performed in oven-dried glassware fitted with rubber septa under a nitrogen atmosphere and were stirred with Teflon-coated magnetic stirring bars. Liquid reagents and solvents were transferred via syringe using standard Schlenk techniques. Tetrahydrofuran (THF), diethyl ether (Et₂O) was distilled over sodium/benzophenone ketyl. Dichloromethane (CH₂Cl₂) and toluene were distilled over calcium hydride. All other solvents such as DMF, Chloroform, Dioxane, DMSO, DCE, Acetonitrile, CCl₄, Methanol and reagents such as β -Cyclocitral, 2-Isopropyl phenol, *ortho*-Vanillin, Phenyl magnesium bromide, Methyl magnesium bromide, 2-Bromo anisole, 3-Bromo anisole, 4-Bromoveratrole, 4-Bromo-1,2-(methylenedioxy)benzene, 4-Bromotoluene, 5-Bromo-1,2,3-trimethoxybenzene, 1-Bromo-3,5-dimethylbenzene, 2-Bromobenzaldehyde, 6-Bromoveratraldehyde, Piperonal, Bromine, Ceric ammonium nitrate, Dimethyl sulphate, Potassium carbonate, PCC, Ammonium tribromide, *n*-Butyllithium, NaSEt, different types of Metal triflate etc. were used as received, unless otherwise noted.

Thin layer chromatography was performed using Merck Silicagel 60 F-254 precoated plates (0.25 mm) and visualized by UV irradiation, anisaldehyde, yellow dip stain and other stains. Silicagel from Merck (particle size 230-400 mesh) was used for flash chromatography. Melting points were recorded on a digital melting point apparatus from Jyoti Scientific (AN ISO 9001:2000) and are uncorrected. ¹H and ¹³C NMR spectra were recorded on Bruker 400, 500 MHz spectrometers with ¹³C operating frequencies of 100, 125 MHz, respectively. Chemical shifts (δ) are reported in ppm relative to the residual solvent signal (δ = 7.26 for ¹H NMR and δ = 77.0 for ¹³C NMR). Data for ¹H NMR spectra are reported as follows: chemical shift (multiplicity, coupling constants and number of hydrogens). Abbreviations are as follows: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet), br (broad). IR spectra were recorded on a FT-IR system (Spectrum BX) from PerkinElmer spectrometer and are reported in frequency of absorption (cm⁻¹). Only selected IR absorbencies are reported. High resolution mass spectra were obtained from the Central Instrumentation Facility (CIF) at the Indian Institute of Science Education and Research (IISER) Bhopal.

Scheme 1: General procedure for synthesis of arylvinylcarbinols (2a-i) of β -cyclocitral.

Step 1:

A flame-dried round-bottom flask was charged with Mg-turning (1.44 equiv.) & a pinch of I_2 under nitrogen atmosphere in dry THF (3 mL for per mmol) and cooled to 0 °C on an ice-bath. Then substituted bromobenzene (1.2 equiv.) was added dropwise (red to colourless to brown colour) over a period of 15 minutes at 0 °C. The reaction mixture was stirred at room temperature until the Mg turning was almost consumed. The freshly prepared Grignard was directly used for next step.

Step 2:

A flame-dried round-bottom flask was charged with β -cyclocitral [1.0 equiv. (generally in 500 mg scale)] under nitrogen atmosphere in dry THF (5 mL for per mmol) and cooled to 0 °C on an ice-bath. The Grignard solution (1.2 equiv. as prepared earlier) was added drop wise to the reaction mixture by a syringe and allowed to warm to room temperature. The stirring was continued till TLC showed complete consumption of starting materials. The reaction mixture was quenched by saturated NH₄Cl solution and then diluted with 20 mL of EtOAc. The whole reaction mixture was taken in a separatory funnel and extracted with 20 mL of water. The organic filtrate was separated and the aqueous part was again washed with 10 mL EtOAc, the combined organic filtrate dried over anhydrous Na₂SO₄

and concentrated in a rotary evaporator under vacuum. The crude products were purified by flash chromatography (10:1 hexanes/EtOAc) to afford **2a-i**.

(±)-(3,4-dimethoxyphenyl)(2,6,6-trimethylcyclohex-1-en-1-yl)methanol ±(2a): 59% yield as colorless solid, $R_f = 0.5$ (20% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.07 (d, *J* = 1.4 Hz, 1H), 6.90 (dq, *J* = 1.08, 8.36 Hz, 1H), 6.81 (d, *J* = 8.32 Hz, 1H), 5.39 (s, 1H), 3.89 (s, 3H), 3.88 (s, 3H), 2.00 (t, *J* = 6.12 Hz, 2H), 1.89 (s, 1H), 1.69-1.63 (m, 2H), 1.56-1.53 (m, 2H), 1.46 (s, 3H), 1.20 (s, 3H), 1.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 148.7, 147.4, 140.4, 137.3, 133.8, 118.1, 110.7, 109.7, 70.6, 55.9, 55.8, 39.7, 34.8, 33.7, 28.6, 21.6, 21.6, 19.3; **IR** (film) v_{max} 3448, 2917, 2834, 2361, 1598, 1530, 1513, 1463, 1410, 1382, 1360, 1253, 1156, 1137, 1030, 940, 895, 858, 805, 763, 639, 581 cm⁻¹; **HRMS** (ESI) m/z 313.1774 [(M + Na)]⁺; calculated for [C₁₈H₂₆O₃ + Na]⁺: 313.1774; **MP** 53–55 °C.

(±)-(2-methoxyphenyl)(2,6,6-trimethylcyclohex-1-en-1-yl)methanol ±(2b): 86% yield as colorless solid, $R_f = 0.5$ (10% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.25 (t, J = 9.88 Hz, 2H), 6.92 (t, J = 8.72 Hz, 2H), 5.67 (s, 1H), 3.95 (s, 3H), 2.13 (brs, 2H), 1.70 (brs, 3H), 1.54 (q, J = 10.8 Hz, 2H), 1.23 (s, 3H), 0.83 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 157.8, 135.4, 134.6, 130.8, 129.0, 128.5, 120.3, 110.3, 68.4, 55.3, 39.7, 34.7, 33.7, 28.6, 27.9, 22.7, 19.4; **IR** (film) v_{max} 3565, 2928, 1600, 1586, 1486, 1463, 1403, 1279, 1231, 1184, 1120, 1100, 1029, 975, 940, 863, 754, 735, 623, 574 cm⁻¹; **HRMS** (ESI) m/z 283.1652 [(M + Na)]⁺; calculated for [C₁₇H₂₄O₂ + Na]⁺: 283.1669; **MP** 69–71 °C.

(±)-(4-methoxyphenyl)(2,6,6-trimethylcyclohex-1-en-1-yl)methanol ±(2c): 82% yield as colorless gel, $R_f = 0.5$ (10% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.35 (dd, J =6.76, 0.88 Hz, 2H), 6.88 (dd, J =8.84, 2.96 Hz, 2H), 5.41 (s, 1H), 3.82 (s, 3H), 2.01 (t, J = 6.0 Hz, 2H), 1.95 (s, 1H), 1.70-1.64 (m, 2H), 1.57-1.53 (m, 2H), 1.45 (s, 3H), 1.21 (s, 3H), 1.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 158.1, 140.3, 136.8, 133.6, 127.3, 113.4, 70.5, 55.2, 39.8, 34.8, 33.7, 28.7, 28.6, 21.7, 19.3; **IR** (film) v_{max} 3479, 2928, 1890, 1610, 1583, 1506, 1455, 1362, 1246, 1172, 1105, 1038, 974, 968, 857, 821, 761, 734, 691, 589 cm⁻¹; **HRMS** (ESI) m/z 283.1699 [(M + Na]⁺; calculated for [C₁₇H₂₄O₂ + Na]⁺: 283.1669.

(±)-(3-methoxyphenyl)(2,6,6-trimethylcyclohex-1-en-1-yl)methanol ±(2d): 97% yield as colorless gel, $R_f = 0.45$ (10% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.21 (t, J = 7.92 Hz, 1H), 7.00 (s, 1H), 6.97 (d, J = 7.76 Hz, 1H), 6.74 (dd, J = 8.12, 2.44 Hz, 1H), 3.79 (s, 3H), 2.15 (s, 3H), 1.96 (t, J = 6 Hz, 2H), 1.81 (d, J = 4.88 Hz, 1H), 1.65-1.59 (m, 2H), 1.59 (brs, 1H), 1.52 (q, J = 5.28 Hz, 2H), 1.38 (s, 3H), 1.17 (s, 3H), 1.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 159.5, 146.8, 140.5, 134.0, 129.0, 118.4, 111.8, 111.3, 70.6, 55.2, 39.7, 34.9, 33.6, 30.9, 28.9, 28.6, 21.6, 19.3; **IR** (film) ν_{max} 3391, 2930, 2840, 2360, 1920, 1600, 1494, 1286, 1198, 1149, 1078, 1041, 996, 944, 923, 838, 766, 784, 686, 579 cm⁻¹; **HRMS** (ESI) m/z 283.1683 [(M + Na)]⁺; calculated for [C₁₇H₂₄O₂ + Na]⁺: 283.1669.

(±)-Benzo[*d*][1,3]dioxol-5-yl(2,6,6-trimethylcyclohex-1-en-1-yl)methanol ±(2e): 99% yield as colorless gel, $R_f = 0.45$ (20% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.95 (s, 1H), 6.91 (dt, *J* = 8.08, 1.16 Hz, 1H), 6.78 (d, *J* = 8.08 Hz, 1H), 5.96 (s, 2H), 5.33 (d, *J* = 3.96 Hz, 1H), 2.01 (t, *J* = 6.4 Hz, 2H), 1.83 (d, *J* = 4.8 Hz, 1H), 1.69-1.63 (m, 2H), 1.54 (q, *J* = 4.36 Hz, 2H), 1.46 (s, 3H), 1.19 (s, 3H), 1.06 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 147.5, 145.9, 140.4, 138.9, 133.9, 119.1, 107.8, 107.0, 100.8, 70.6, 39.7, 34.8, 33.7, 28.8, 28.6, 21.6, 19.3; **IR** (film) v_{max} 3465, 2927, 2361, 1609, 1487, 1435, 1363, 1237, 1124, 1084,

1041, 992, 939, 868, 809, 768, 731, 710, 555 cm⁻¹; **HRMS** (ESI) m/z 297.1456 $[(M + Na)]^+$; calculated for $[C_{17}H_{22}O_3 + Na]^+$: 297.1461.

(±)-(3,4,5-trimethoxyphenyl)(2,6,6-trimethylcyclohex-1-en-1-yl)methanol ±(2f): 90% yield as colorless gel, $R_f = 0.45$ (35% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.69 (d, J = 0.92 Hz, 2H), 5.36 (s, 1H), 3.86 (s, 3H), 3.85 (s, 6H), 2.01 (t, J = 6.08 Hz, 2H), 1.85 (brs, 1H), 1.70-1.63 (m, 2H), 1.57-1.54 (m, 2H), 1.46 (s, 3H), 1.20 (s, 3H), 1.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 152.9, 140.6, 140.4, 136.4, 134.2, 103.2, 70.8, 60.9, 56.1, 39.8, 34.9, 33.6, 28.8, 28.7, 21.6, 19.3; **IR** (film) v_{max} 3501, 2931, 2361, 1590, 1505, 1455, 1416, 1362, 1325, 1233, 1184, 1127, 1047, 1011, 950, 920, 834, 777, 728 cm⁻¹; **HRMS** (ESI) m/z 343.1794 [(M + Na)]⁺; calculated for [C₁₉H₂₈O₄ + Na]⁺: 343.1880.

(±)-**p-tolyl(2,6,6-trimethylcyclohex-1-en-1-yl)methanol** ±(**2g**): 98% yield as colorless gel, $R_f = 0.6 (10\% \text{ EtOAc in hexane}); {}^{1}\mathbf{H} \mathbf{NMR} (400 \text{ MHz, CDCl}_3) \delta: 7.34 (d,$ *J*= 7.76 Hz, 2H),7.16 (d, *J* = 7.96 Hz, 2H), 5.43 (d, *J* = 4.2Hz, 1H), 2.37 (s, 3H), 2.02 (t, *J* = 6.12 Hz, 2H), 1.91 (d, *J* = 4.88 Hz, 1H), 1.72-1.64 (m, 2H), 1.57 (q, *J* = 4.72 Hz, 2H), 1.45 (s, 3H), 1.23 (s, 3H), 1.08 (s, 3H); {}^{13}\mathbf{C} \mathbf{NMR} (100 \text{ MHz, CDCl}_3) \delta: 141.8, 140.4, 135.7, 133.7, 128.7, 126.0, 70.7, 39.8, 34.8, 33.7, 28.8, 28.6, 21.7, 21.0, 19.4; **IR** (film) v_{max} 3460, 2923, 2731, 1907, 1799, 1651, 1511, 1455, 1363, 1247, 1171, 1109, 1038, 1009, 974, 898, 857, 808, 757, 728, 691, 578 cm⁻¹; **HRMS** (ESI) m/z 267.1757 [(M + Na)]⁺; calculated for [C₁₇H₂₄O + Na] ⁺: 268.1719.

(±)-(3,5-dimethylphenyl)(2,6,6-trimethylcyclohex-1-en-1-yl)methanol ±(2h): 97% yield as colorless solid, $R_f = 0.7$ (10% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.05 (d, J = 0.52 Hz, 2H), 6.88 (d, J = 0.64 Hz, 1H), 5.38 (s, 1H), 2.34 (s, 6H), 2.04-2.01 (m, 2H), 1.83 (s, 1H), 1.71-1.65 (m, 2H), 1.59-1.55 (m, 2H), 1.44 (s, 3H), 1.21 (s, 3H), 1.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 144.7, 140.4, 137.4, 133.7, 127.8, 123.7, 70.8, 39.7, 34.8, 33.6, 28.8, 28.7, 21.7, 21.5, 19.4; **IR** (film) v_{max} 3461, 2927, 2874, 2360, 1602, 1456, 1363, 1238, 1149, 1038, 976, 850, 735 cm⁻¹; **LRMS** (ESI) m/z 281.1859 [(M + Na)]⁺; calculated for [C₁₈H₂₆O + Na]⁺: 281.1876; **MP** 78–80 °C.

(±)-**phenyl**(**2,6,6-trimethylcyclohex-1-en-1-yl)methanol** ±(**2i**): 99% yield as colorless gel, $R_f = 0.5 (5\% \text{ EtOAc in hexane}); {}^{1}\mathbf{H} \mathbf{NMR} (400 \text{ MHz, CDCl}_3) \delta: 7.47-7.44 (m, 2H), 7.34 (t, J)$ = 1.8 Hz, 2H), 7.23 (td, $J = 7.6, 0.84 \text{ Hz}, 1\text{H}), 5.45 (d, J = 3.44 \text{ Hz}, 1\text{H}), 2.01 (t, J = 6.04 \text{ Hz}, 2\text{H}), 1.87 (d, J = 4.52 \text{ Hz}, 1\text{H}), 1.71-1.64 (m, 2\text{H}), 1.59-1.55 (m, 2\text{H}), 1.40 (s, 3\text{H}), 1.22 (s, 3\text{H}), 1.10 (s, 3\text{H}); {}^{13}\mathbf{C} \mathbf{NMR} (100 \text{ MHz, CDCl}_3) \delta: 144.9, 140.5, 133.9, 128.0, 126.2, 125.9, 70.7, 39.7, 34.9, 33.7, 28.9, 28.6, 21.6, 19.4; IR (film) <math>v_{\text{max}}$ 3460, 3060, 3028, 2928, 2866, 2360, 1651,1601, 1493, 1448, 1363, 1248, 1171, 1116, 1032, 1009, 919, 895, 845, 781, 753, 704, 624 cm⁻¹; **HRMS** (ESI) m/z 253.1590 [(M + H)]⁺; calculated for [C₁₆H₂₂ + Na]⁺: 253.1563.

Scheme 2: General procedure for synthesis of arylvinylcarbinols of β -cyclocitral (2j).

A flame-dried round-bottom flask was charged with 2-bromo substituted benzyl alcohol [1.0 equiv. (generally in 500 mg scale)] under nitrogen atmosphere in dry THF (5 mL for per mmol) and cooled to -55 °C on julabo. Then *n*-BuLi (2.05 equiv.) was added dropwise to the reaction mixture. The reaction mixture was stirred at -55 °C for 15 min. Then β -cyclocitral solution (1.0 equiv.) (5 mL dry THF) was added dropwise to the reaction mixture

over a period of 10 min at -55 °C. And then allowed to warm at room temperature and stirred for another 1h. The stirring was continued till TLC showed complete consumption of starting materials. The reaction mixture was quenched by saturated NH₄Cl solution and then diluted with 20 mL of EtOAc. The whole reaction mixture was taken in a separatory funnel and extracted with 20 mL of water. The organic filtrate was separated and the aqueous part was again washed with 10 mL EtOAc, the combined organic filtrate dried over anhydrous Na₂SO₄ and concentrated in a rotary evaporator under vacuum. The crude products were purified by flash chromatography (1:1 hexanes/EtOAc) to afford (**2j**).

(±)-(6-(hydroxymethyl)benzo[d][1,3]dioxol-5-yl)(2,6,6-trimethylcyclohex-1-en-1-

yl)methanol ±(2j): 71% yield as colorless solid, $R_f = 0.5$ (50% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.91 (s, 1H), 6.86 (s, 1H), 5.97 (dd, J = 4.13, 1.46 Hz, 2H), 5.66 (s, 1H), 5.32 (s, 1H), 4.89 (d, J = 11.94 Hz, 1H), 4.4 (d, J = 11.96 Hz, 1H), 2.19-2.05 (m, 2H), 1.76 (s, 3H), 1.7-1.67 (m, 2H), 1.54-1.48 (m, 2H), 1.21 (s, 3H), 0.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 146.8, 138.2, 134.7, 134.6, 134.2, 111.3, 109.4, 101.1, 70.4, 64.1, 39.5, 34.7, 33.7, 28.6, 28.1, 22.7, 19.1; **IR** (film) v_{max} 3361, 2927, 1651, 1503, 1480, 1362, 1335, 1267, 1230, 1158, 1118, 1040, 971, 937, 854, 809, 737, 701 cm⁻¹; **HRMS** (ESI) m/z 327.1577 [(M + Na)⁺; calculated for [C₁₈H₂₄O₄ + Na]⁺: 327.1567; **MP** 116–118 °C.

References and Notes:

- 1. Li, W.; Jing, H.; Bu, X.; Chang, T.; Jin, L.; Liang, Y. Catal. Commun. 2007, 8, 80.
- 2. Peat, A. J.; Buchwald S. L. J. Am. Chem. Soc. 1996, 118, 1028.

(±)-2-(5-(hydroxy(2,6,6-trimethylcyclohex-1-en-1-yl)methyl)-2,3-

dimethoxyphenyl)propan-2-ol ±(**2k**): 55% yield as colorless solid, $R_f = 0.5$ (50% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.02 (s, 1H), 6.93 (s, 1H), 5.35 (s, 1H), 4.49 (s, 1H), 3.99 (s, 3H), 3.87 (s, 3H), 2.00 (t, J = 6.08 Hz, 2H), 1.93 (brs, 1H), 1.69-1.63 (m, 2H), 1.59 (s, 3H), 1.58 (s, 3H) 1.56-1.53 (m, 2H), 1.43 (s, 3H), 1.19 (s, 3H), 1.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 152.3, 145.1, 140.3, 140.1, 140.0, 134.0, 115.7, 109.7, 73.0, 70.7, 61.0, 55.8, 39.8, 34.8, 33.7, 30.9, 28.8, 28.7, 21.7, 19.3; **IR** (film) v_{max} 3445, 2930, 1584, 1456, 1303, 1128, 1066, 1008 cm⁻¹. **HRMS** (ESI) m/z 371.2183 [(M + Na)]⁺; calculated for [C₂₁H₃₂O₄ + Na]⁺: 371.2193; **MP** 76–79 °C.

2(2-methoxy-3-methylphenyl)propan-2-ol (9e): 78% yield as colorless liquid gel, $R_f = 0.4$ (10% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.17 (dd, J = 7.72, 1.04 Hz, 1H), 7.07 (d, J = 7.36 Hz, 1H), 6.96 (t, J = 7.6 Hz, 1H), 4.17 (brs, 1H), 3.85 (s, 3H), 2.31 (s, 3H), 1.60 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 156.6, 140.4, 131.1, 130.8, 124.1, 123.8, 72.9, 61.1, 31.3, 16.9; **IR** (film) v_{max} 3445, 2973, 2360, 1469, 1414, 1367, 1258, 1167, 1090, 1009, 955, 903, 833, 784, 761 cm⁻¹. **HRMS** (ESI) m/z 203.1052 [(M + Na)]⁺; calculated for [C₁₁H₁₆O₂ + Na]⁺: 203.1043.

(1-isopropyl-2-methoxy-3-methylbenzene) (9f): 88% yield as colorless liquid gel, $R_f = 0.4$ (in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.12 (d, J = 5.28 Hz, 1H), 7.02 (s, 1H), 7.0 (d, J = 1.36 Hz, 1H), 3.74 (s, 3H), 3.35 (septet, J = 6.92 Hz, 1H), 2.31 (s, 3H), 1.23 (d, J = 6.92 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.8, 141.6, 130.8, 128.6, 124.2, 124.1, 60.8, 29.7, 26.4, 23.9; **IR** (film) v_{max} 2968, 2928, 1458, 1418, 1364, 1260, 1220, 1167, 1090, 1012, 955, 904, 790, 760 cm⁻¹. **HRMS** (ESI) m/z 163.1157 [(M - H)]⁺; calculated for [C₁₁H₁₆O - H]⁺: 163.1117.

(5-bromo-1-isopropyl-2-methoxy-3-methylbenzene) (9g): 72% yield as colorless liquid gel, $R_f = 0.4$ (in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.17 (d, J = 2.28 Hz, 1H), 7.13 (d, J = 2.04 Hz, 1H), 3.69 (s, 3H), 3.27 (pentate, J = 6.92 Hz, 1H), 2.25 (s, 3H), 1.19 (d, J = 6.92 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.0, 143.9, 133.2, 131.3, 127.4, 117.0, 60.9, 26.6, 23.7; IR (film) v_{max} 2964, 2828, 1577, 1470, 1423, 1384, 1363, 1332, 1259, 1236, 1205, 1169, 1110, 1065, 1012, 865, 824, 774, 704, 568 cm⁻¹.

(±)-(3-isopropyl-4-methoxy-5-methylphenyl)(2,6,6-trimethylcyclohex-1-en-1-

yl)methanol ±(2l): 65% yield as colorless liquid gel, $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-D₆) δ : 7.0 (s, 1H), 6.94 (s, 1H), 5.13 (d, J = 4.8 Hz, 1H), 5.03 (d, J = 4.92 Hz, 1H), 3.56 (s, 3H), 3.15 (m, 1H), 2.13(s, 3H), 1.86 (t, J = 6.0 Hz, 2H), 1.52 (t, J = 2.92 Hz, 2H), 1.37 (d, J = 5.76 Hz, 2H), 1.28 (s, 3H), 1.06 (d, J = 6.8 Hz, 6H), 1.0 (s, 3H), 0.92 (s, 3H); ¹³C NMR (100 MHz, DMSO-D₆) δ : 153.7, 141.7, 140.0, 139.9, 131.4, 129.4, 126.6, 122.2, 69.1, 60.8, 40.3, 34.8, 33.5, 29.2, 29.1, 26.2, 24.4, 24.3, 21.9, 19.5, 16.8; **IR** (film) v_{max} 3459, 2959, 2930, 1471, 1362, 1214, 1166, 1126, 1082, 1016, 871, 726 cm⁻¹. **HRMS** (ESI) m/z 339.2328 [(M + Na)]⁺; calculated for [C₂₁H₃₂O₂ + Na]⁺: 339.2295.

(±)-(3-isopropyl-4-methoxyphenyl)(2,6,6-trimethylcyclohex-1-en-1-yl)methanol ±(2m): 71% yield as colorless liquid gel, $R_f = 0.5$ (10% EtOAc in hexane); ¹H NMR (400 MHz, DMSO-D₆) δ : 7.22 (d, J = 1.48 Hz, 1H), 7.10 (d, J = 8.44 Hz, 1H), 6.81 (d, J = 8.48 Hz, 1H), 5.25 (d, J = 4.76 Hz, 1H), 5.07 (d, J = 4.8 Hz, 1H), 3.74 (s, 3H), 3.35(s, 1H), 3.23 (m, 1H), 1.93 (t, J = 6.0 Hz, 2H), 1.59 (d, J = 4.4 Hz, 2H), 1.45 (t, J = 2.68 Hz, 2H), 1.37 (s, 3H), 1.14 (s, 3H), 1.12 (s, 3H), 1.08 (s, 3H), 0.98 (s, 3H); ¹³C NMR (100 MHz, DMSO-D₆) δ : 154.8, 140.2, 138.1, 135.1, 131.3, 124.6, 124.2, 110.2, 69.2, 55.7, 34.8, 33.6, 29.1, 29.0, 26.5, 23.2, 23.2, 21.9, 19.5; **IR** (film) v_{max} 3450, 2958, 2929, 2867, 1500, 1463, 1362, 1244, 1166, 1089, 1036, 993, 811 cm⁻¹. **HRMS** (ESI) m/z 325.2161 [(M + Na)]⁺; calculated for [C₂₀H₃₀O₂ + Na]⁺: 325.2138.

Me Me	$\frac{\text{Me}}{\text{OMe}} \frac{\text{LA, temp}}{\text{solvent, till}}$		e C (3a)	∼OMe+ M	Me Me (4a	
entry	catalyst (mol%)	solvent	temp	time %	6 of ± (3a)	% of (4a)
1.	Cu(OTf) ₂ (10 mol%)	CH_2CI_2	rt	24 h	78%	12%
2.	Sn(OTf) ₂ (10 mol%)	CH_2CI_2	rt	24 h	82%	11%
3.	Zn(OTf) ₂ (10 mol%)	CH_2CI_2	rt	12 h	60%	25%
4.	Bi(OTf) ₃ (10 mol%)	CH_2CI_2	rt	12 h	70%	16%
5.	In(OTf) ₃ (10 mol%)	CH_2CI_2	rt	12 h	56%	23%
6.	Sm(OTf) ₃ (10 mol%)	CH_2CI_2	rt	12 h	45%	37%
7.	Sn(OTf) ₂ (10 mol%)	CH ₂ Cl ₂	40 °C	0 9 h	98%	00%
8.	Cu(OTf) ₂ (10 mol%)	CH ₂ Cl ₂	40 °C	09 h	96%	00%
9.	Cu(OTf) ₂ (10 mol%)	PhMe	90 °C	12 h	88%	00%
10.	Cu(OTf) ₂ (10 mol%)	THF	70 °C	18 h	60%	15%
11.	Cu(OTf) ₂ (10 mol%)	Et ₂ O	35 °C	12 h	72%	13%
12.	Sn(OTf) ₂ (10 mol%)	dioxane	75 °C	12 h	80%	06%
13.	Sn(OTf) ₂ (10 mol%)	DMF	90 °C	12 h	42%	40%
14.	Sn(OTf) ₂ (10 mol%)	THF	70 °C	12 h	79%	15%
15.	Sn(OTf) ₂ (10 mol%)	PhMe	90 °C	12 h	93%	00%
16.	Sn(OTf) ₂ (10 mol%)	DMSO	90 °C	12 h	95%	00%
17.	Sn(OTf) ₂ (10 mol%)	DCE	70 °C	12 h	93%	00%
18.	Cu(OTf) ₂ (5 mol%)		40 °C	18 h	90%	00%
19.	Sn(OTf) ₂ (5 mol%)	CH_2CI_2	40 °C	18 h	89%	00%

Table 1: Optimization of cyclization of arylvinylcarbinols.

Reactions were carried out on a 1.0 mmol of $\pm(2a)$ in 5 mL of solvent isolated yields reported after column chromatography.

General procedure for metal triflate-catalyzed cyclization of arylvinylcarbinols:

In an oven-dried round-bottom flask, arylcarbinols of β -cyclocitral (1.0 mmol; 1.0 equiv.) and Sn(OTf)₂ (0.1 mmol; 10 mol%) [**Condition A**] or Cu(OTf)₂ (0.1 mmol; 10 mol%) [**Condition B**] were taken in dichloromethane (5 mL). The round-bottom flask was stirred at 40 °C for indicated time (9-12 h). Upon completion of the reactions, (TLC showed complete consumption of starting material) the reaction mixture was quenched by saturated NaHCO₃

solution and diluted with 5 mL of dichloromethane. The whole reaction mixture was taken in a separatory funnel and extracted with 5 mL of water. The organic filtrate was dried over Na_2SO_4 and concentrated in a rotary evaporator under vacuum. The crude products were purified by flash chromatography (10:1 hexanes/EtOAc) to afford Friedel-crafts alkylation products.

Condition A: Sn(OTf)₂ (10 mol%); Condition B: Cu(OTf)₂ (10 mol%)

Figure 1: Substrates scope of metal triflate-catalyzed cyclization.

(±)-6,7-dimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydro-1*H*-fluorene ±(3a): 98% yield as colorless gel, $R_f = 0.6$ (10% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.89 (s, 1H), 6.85 (s, 1H), 6.31 (s, 1H), 3.92 (s, 3H), 3.91 (s, 3H), 2.13 (qd, J = 12.68, 2.92 Hz, 1H), 1.97 (qt, J = 14.36, 3.84 Hz, 1H), 1.70-1.60 (m, 2H), 1.37 (s, 3H), 1.31 (s, 3H), 1.26 (s, 3H), 1.12 (td, J = 12.96, 3.88 Hz, 1H), 1.00 (td, J = 13.2, 3.8 Hz, 1H); ¹³C NMR (100 MHz,

CDCl₃) δ : 163.0, 148.0, 147.6, 146.6, 134.6, 120.2, 105.7, 104.4, 56.4, 56.1, 51.0, 42.7, 38.4, 35.5, 31.3, 25.3, 23.6, 19.9; **IR** (film) υ_{max} 3059, 2925, 1609, 1573, 1487, 1469, 1409, 1382, 1317, 1233, 1213, 1151, 1079, 1032, 992, 864, 841, 787, 743, 670 cm⁻¹; **HRMS** (ESI) m/z 273.1849 [(M + H)]⁺; calculated for [C₁₈H₂₄O₂ + H]⁺: 273.1849.

(±)-8-methoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydro-1*H*-fluorene ±(3b): 94% yield as colorless solid, $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.15 (t, J = 7.56 Hz, 1H), 6.92 (d, J = 7.4 Hz, 1H), 6.76 (d, J = 8.08 Hz, 1H), 6.56 (s, 1H), 3.91 (s, 3H), 2.17 (dq, J = 12.72, 4.72 Hz, 1H), 1.99 (qt, J = 13.92, 3.84 Hz, 1H), 1.71-1.57 (m, 2H), 1.39 (s, 3H), 1.34 (s, 3H), 1.27 (s, 3H), 1.17-0.98 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.7, 157.3, 152.7, 130.2, 125.3, 116.5, 114.0, 108.4, 55.4, 51.5, 42.8, 38.0, 35.6, 31.3, 25.3, 23.4, 19.8; **IR** (film) v_{max} 2925, 1593, 1574, 1479, 1361, 1272, 1247, 1180, 1108, 1076, 1032, 971, 863, 784, 740, 672 cm⁻¹; **HRMS** (ESI) m/z 243.1751 [(M + H)]⁺; calculated for [C₁₇H₂₂O + H]⁺: 243.1743; **MP** 47–49 °C.

(±)-6-methoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydro-1*H*-fluorene ±(3c): 77% yield as colorless gel, $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.16 (d, J = 8.12 Hz, 1H), 6.83 (d, J = 2.32 Hz, 1H), 6.74 (dd, J = 8.12, 2.36 Hz, 1H), 6.29 (s, 1H), 3.81 (s, 3H), 2.10 (dd, J = 12.72, 1.52 Hz, 1H), 1.95 (qt, 14.4, J = 3.8 Hz, 1H), 1.66-1.59 (m, 2H), 1.36 (s, 3H), 1.28 (s, 3H), 1.23(s, 3H), 1.15-0.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 162.1, 157.4, 157.0, 135.2, 120.6, 120.1, 111.1, 108.2, 55.5, 51.0, 42.7, 38.1, 35.4, 31.3, 25.5, 23.7, 19.8; **IR** (film) v_{max} 3061, 2923, 1733, 1597, 1574, 1507, 1470, 1382, 1370, 1282, 1246, 1217, 1202, 1174, 1083, 1035, 970, 943, 918, 860, 802, 751, 670, 623 cm⁻¹; **HRMS** (ESI) m/z 243.1739 [(M + H)]⁺; calculated for [C₁₇H₂₂O + H]⁺: 243.1743.

(±)-7-methoxy-1,1,4a-trimethyl2,3,4,4a-tetrahydro-1*H*-fluorene ±(3d): 75% yield as colorless gel, $R_f = 0.5$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.11 (d, J = 8.12 Hz, 1H), 6.84 (d, J = 2.32 Hz, 1H), 6.67 (dd, J = 8.12, 2.4 Hz, 1H), 6.32 (s, 1H), 3.80 (s, 3H), 2.12 (dd, J = 12.8, 1.64 Hz, 1H), 1.93 (qt, J = 14.52, 3.56 Hz, 1H), 1.66-1.56 (m, 2H), 1.35 (s, 3H), 1.29 (s, 3H), 1.23 (s, 3H), 1.34-0.93 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.5, 158.7, 147.7, 143.5, 121.3, 120.6, 109.5, 106.2, 55.5, 50.3, 42.6, 38.3, 35.6, 31.3, 25.2, 23.6, 19.8; **IR** (film) υ_{max} 3063, 2923, 1613, 1470, 1370, 1344, 1281, 1235, 1187, 1149, 1109, 1041, 1022, 969, 939, 870, 805, 761, 673, 621, 583 cm⁻¹; **HRMS** (ESI) m/z 243.1732 [(M + H)]⁺; calculated for [C₁₇H₂₂O + H]⁺: 243.1743.

(±)-4b,8,8-trimethyl-5,6,7,8-tetrahydro-4b*H*-fluoreno[2,3-d][1,3]dioxole ±(3e): 99% yield as colorless gel, $R_f = 0.6$ (10% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ: 6.79 (s, 1H), 6.27 (s, 1H), 5.94 (s, 2H), 2.11 (d, *J* = 12.72 Hz, 1H), 1.95 (q, *J* = 11.92, 1H), 1.65 (t, *J* = 11.6 Hz, 2H), 1.35 (s, 3H), 1.31 (s, 3H), 1.25 (s, 3H), 1.12 (t, *J* = 13.44 Hz, 1H), 0.99 (t, *J* = 13.16 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ: 163.0, 149.2, 146.1, 145.0, 135.6, 120.3, 102.9, 101.6, 100.7, 50.7, 42.7, 38.3, 35.5, 31.2, 25.3, 23.5, 19.9; **IR** (film) v_{max} 3063, 2924, 2767, 1622, 1499, 1471, 1316, 1284, 1240, 1187, 1168, 1145, 1108, 1040, 1011, 968, 943, 865, 836, 798, 670 cm⁻¹; **LRMS** (ESI) m/z 255.2271 [(M - H)]⁺; calculated for [C₁₇H₂₀O₂ -H]⁺: 255.1380.

(±)-5,6,7-trimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydro-1*H*-fluorene ±(3f): 99% yield as colorless solid, $R_f = 0.5$ (10% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.66 (s, 1H), 6.24 (s, 1H), 3.97 (s, 3H), 3.88 (s, 3H), 3.87 (s, 3H), 2.48 (dq, J = 12.76, 2.96 Hz, 1H), 1.96 (qt, J = 13.68, 3.72 Hz, 1H), 1.67-1.59 (m, 1H), 1.47 (s, 3H), 1.29 (s, 3H), 1.26 (s, 3H), 1.17-1.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.2, 153.0, 149.5, 139.5, 138.3, 138.0, 120.2, 100.2, 60.89, 60.86, 56.2, 52.2, 42.6, 36.9, 35.5, 31.5, 25.4, 21.3, 19.6; **IR** (film) v_{max} 2933, 2361, 1610, 1574, 1469, 1410, 1382, 1353, 1286, 1242, 1195, 1157, 1138, 1102, 1042, 1021, 994, 933, 907, 861, 790, 673 cm⁻¹; **HRMS** (ESI) m/z 303.1943 [(M + H)]⁺; calculated for [C₁₉H₂₆O₃ + H]⁺: 303.1955; **MP** 89–91 °C.

(±)-1,1,4a,6-tetramethyl-2,3,4,4a-tetrahydro-1*H*-fluorene ±(3g): 78% yield as colorless gel, $R_f = 0.6$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.19 (d, J = 7.48 Hz, 1H), 7.09 (s, 1H), 7.03 (d, J = 7.36 Hz, 1H), 6.37 (s, 1H), 2.41 (s, 3H), 2.16 (d, J = 12.64 Hz, 1H), 2.0 (q, J = 13.76 Hz, 1H), 1.67 (t, J = 11.28 Hz, 2H), 1.40 (s, 3H), 1.33 (s, 3H), 1.28 (s, 3H), 1.14 (t, J = 13.04 Hz, 1H), 1.03(t, J = 13.64 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.1, 155.5, 139.5, 126.9, 121.9, 120.5, 120.1, 50.7, 42.7, 38.0, 35.5, 31.3, 29.7, 25.3, 23.5, 21.6, 19.8; **IR** (film) ν_{max} 2997, 2924, 2865, 1599, 1467, 1370, 1285, 1176, 1138, 1032, 969, 861, 808, 780, 670 cm⁻¹; **HRMS** (ESI) m/z 227.1799 [(M)]⁺; calculated for [C₁₇H₂₃]⁺: 227.1794.

(±)-1,1,4a,5,7-pentamethyl-2,3,4,4a-tetrahydro-1*H*-fluorene ±(3h): 78% yield as colorless solid, $R_f = 0.7$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.97 (s, 1H), 6.74 (s, 1H), 6.33 (s, 1H), 2.51 (d, J = 12.72 Hz, 1H), 2.44 (s, 3H), 2.36 (s, 3H), 2.0 (q, J = 14.68 Hz, 1H), 1.66 (d, J = 12.08 Hz, 2H), 1.46 (s, 3H), 1.33 (s, 3H), 1.30 (s, 3H), 1.17 (t, J = 12.84 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.4, 149.1, 142.9, 135.9, 131.7, 127.6, 121.0, 119.0,

52.0, 42.2, 35.5, 35.4, 31.4, 31.6, 25.5, 21.2, 20.5, 19.5, 18.6; **IR** (film) ν_{max} 2926, 2865, 1616, 1469, 1381, 1284, 1155, 1087, 1026, 967, 882, 858, 838, 761, 678 cm⁻¹; **HRMS** (ESI) m/z 241.1955 [(M + H)⁺; calculated for [C₁₈H₂₄ + H] ⁺: 241.1951; **MP** 59-60 °C.

(±)-1,1,4a-trimethyl-2,3,4,4a-tetrahydro-1*H*-fluorene ±(3i): 23% yield as colorless gel, $R_f = 0.5$ (in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.26 (d, J = 7.32 Hz, 1H), 7.23 (d, J = 7.4 Hz, 1H), 7.18 (dt, J = 7.36, 1.28 Hz, 1H), 7.11 (dt, J = 7.36, 1.12 Hz, 1H), 6.36 (s, 1H), 2.15 (dd, J = 12.76, 1.8 Hz, 1H), 1.95 (qt, J = 13.68, 3.92 Hz, 1H), 1.66-1.59 (m, 2H), 1.36 (s, 3H), 1.29 (s, 3H), 1.24 (s, 3H), 1.14-.094 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.1, 155.2, 142.2, 126.3, 124.0, 120.9, 120.7, 120.4, 50.9, 42.6, 38.0, 35.5, 31.3, 25.2, 23.4, 19.8; **IR** (film) v_{max} 3062, 2922, 1608, 1468, 1382, 1370, 1290, 1188, 1091, 969, 873, 849, 746, 671 cm⁻¹; **HRMS** (ESI) m/z 213.1655 [(M)⁺]; calculated for [C₁₆H₂₂O]⁺: 213.1638.

Scheme 4: Substrates scope using arylvinylcarbinols (2j).

(±)-5-(2,6,6-trimethylcyclohex-1-en-1-yl)-5,7-dihydro-[1,3]dioxolo[4,5-f]isobenzofuran ±(8): 91% yield as colorless solid, $R_f = 0.45$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.63 (s, 1H), 5.95 (dd, J = 9.76, 1.36 Hz, 2H), 5.68 (s, 1H), 5.02 (ABq, J = 11.76, 2.76 Hz, 2H), 2.64-1.88 (m, 2H), 1.61-1.58 (m, 2H), 1.52-1.49 (m, 2H), 1.32 (s, 3H), 1.13 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 147.5, 147.1, 137.1, 137.0, 131.9, 102.1, 101.4, 101.3, 77.2, 72.0, 34.6, 34.2, 29.7, 29.0, 28.3, 19.8, 19.4; **IR** (film) υ_{max} 2928, 1503, 1476, 1362, 1335, 1269, 1244, 1157, 1128, 1040, 941, 835, 809, 767, 697cm⁻¹; **HRMS** (ESI) m/z 287.1651 [(M + H)]⁺; calculated for [C₁₈H₂₂O₃ + H]⁺: 287.1642; **MP** 101–103 °C.

Scheme 5: Substrates scope using arylvinylcarbinols (2k-m).

(±)-2-(5,6-dimethoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydro-1*H*-fluoren-7-yl)propan-2-ol ±(3k): 90% yield as colorless solid, $R_f = 0.4$ (10% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.84 (s, 1H), 6.26 (s, 1H), 3.90 (s, 3H), 3.86 (s, 3H), 3.16 (dd, J = 12.96, 088 Hz, 1H), 1.91 (qt, J = 12.68, 2.8 Hz, 1H), 1.78 (s, 3H), 1.74 (s, 3H), 1.64-1.61 (m, 2H), 1.59-1.53 (m, 1H), 1.56 (s, 3H), 1.31 (s, 3H), 1.28 (s, 3H), 1.12 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 165.2, 151.8, 143.8, 143.6, 139.7, 139.2, 119.9, 103.8, 74.7, 61.0, 56.1, 55.6, 42.2, 37.4, 35.6, 33.2, 32.4, 32.0, 26.2, 22.3, 20.2; **IR** (film) v_{max} 3464, 2994, 2924, 2863, 1621, 1596, 1444, 1418, 1358, 1325, 1287, 1244, 1177, 1153, 1084, 1036, 1015, 962, 865, 834, 817, 738, 677 cm⁻¹; **HRMS** (ESI) m/z 331.2274 [(M + H)]⁺; calculated for $[C_{21}H_{30}O_3 + H]^+$: 331.2268; **MP** 126–128 °C.

(±)-5,6-dimethoxy-1,1,4a-trimethyl-7-(prop-1-en-2-yl)-2,3,4,4a-tetrahydro-1H-fluorene ±(3l): 97% yield as colorless solid, $R_f = 0.3$ (2% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.81 (s, 1H), 6.28 (s, 1H), 5.32 (d, J = 14.56 Hz, 1H), 4.90 (s, 1H), 3.86 (s, 3H), 3.76 (d, J = 8.64 Hz, 3H), 2.47 (d, J = 12.52, 1H), 2.05 (d, J = 28.52 Hz, 3H), 1.88 (qt, J = 13.56, 3.28 Hz, 1H), 1.6 (m, 2H), 1.27 (s, 3H), 1.23 (s, 3H), 1.13-1.07 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 164.7, 151.3, 143.4, 143.1, 141.6, 138.8, 134.9, 121.5, 116.7, 103.6, 61.4, 55.8, 55.3, 42.5, 39.5, 35.6, 31.8, 25.4, 25.0, 21.0, 19.8; IR (film) v_{max} 2929, 2361, 1608, 1590, 1455, 1417, 1349, 1283, 1267, 1242, 1207, 1155, 1094, 1047, 1022, 900, 864, 792, 671, 617 cm⁻¹; HRMS (ESI) m/z 313.2150 [(M + H)]⁺; calculated for [C₂₁H₂₈O₂ + H]⁺: 313.2162; MP 70–73 °C.

(±)-7-isopropyl-6-methoxy-1,1,4a,5-tetramethyl-2,3,4,4a-tetrahydro-1*H*-fluorene ±(3m): 90% yield as colorless gel, $R_f = 0.4$ (in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.0 (s, 1H), 6.27 (s, 1H), 3.69 (s, 3H), 3.33 (m, 1H), 2.48 (d, J = 12.56 Hz, 1H), 2.37 (s, 3H), 1.84 (qt, J =13.92, 3.32 Hz, 1H), 1.63-1.60 (m, 2H), 1.42 (s, 3H), 1.27 (s, 3H), 1.24 (s, 6H), 1.22 (s, 3H), 1.20-1.08 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 163.6, 153.4, 150.7, 139.3, 138.4, 125.7, 120.8, 115.5, 61.1, 52.7, 42.1, 35.5, 35.3, 31.6, 26.6, 25.6, 24.2., 20.7, 19.5, 12.0; **IR** (film) v_{max} 2960, 2928, 2867, 1464, 1410, 1380, 1365, 1307, 1287, 1241, 1209, 1131, 1022, 882, 785, 675 cm⁻¹; **HRMS** (ESI) m/z 321.2207 [(M + Na)]⁺; calculated for [C₂₁H₃₀O + Na]⁺: 321.2189; **MP** 67–69 °C.

(±)-5-isopropyl-6-methoxy-1,1,4a,7-tetramethyl-2,3,4,4a-tetrahydro-1*H*-fluorene ±(3n): 8% yield as colorless gel, $R_f = 0.5$ (in hexane); ¹H NMR (500 MHz, CDCl₃) δ : 6.92 (s, 1H), 6.22 (s, 1H), 3.76 (s, 3H), 3.41 (m, 1H), 2.45 (d, J = 12.3 Hz, 1H), 2.30 (s, 3H), 1.93 (qt, J =13.8, 3.4 Hz, 1H), 1.62-1.59 (m, 2H), 1.41 (s, 3H), 1.39 (d, J = 7.85 Hz, 3H), 1.33 (d, J =7.08 Hz, 3H), 1.26 (s, 6H), 1.24 (s, 3H) 1.21-1.07 (m, 2H); ¹³C NMR (125 MHz, CDCl₃) δ : 163.6, 156.3, 150.1, 138.2, 136.4, 129.4, 121.1, 120.5, 70.0, 53.0, 42.0, 36.5, 35.3, 31.7, 28.8, 25.7, 22.4, 21.7, 21.6, 19.7, 17.1; **IR** (film) ν_{max} 2926, 1449, 1357, 1232, 1020, 857, 672 cm⁻¹ . **HRMS** (ESI) m/z 299.2340 [(M + H)]⁺; calculated for [C₂₁H₃₀O + H]⁺: 299.2369.

(±)-7-isopropyl-6-methoxy-1,1,4a-trimethyl-2,3,4,4a-tetrahydro-1*H*-fluorene ±(3o): 96% yield as colorless solid, $R_f = 0.4$ (in hexane); ¹H NMR (400 MHz, CDCl_{3 +} DMSO-D₆)(4:1) δ : 7.00 (s, 1H), 6.67 (s, 1H), 6.18 (s, 1H), 3.72 (s, 3H), 3.19 (septet, J = 6.96 Hz, 1H), 1.99 (d, J = 12.68 Hz, 1H), 1.84 (q, J = 14.08 Hz, 1H), 1.51 (t, J = 12.44 Hz, 2H), 1.24 (s, 3H), 1.16 (s, 3H), 1.11 (s, 3H), 1.10 (d, J = 1.48 Hz, 3H), 1.08 (d, J = 1.16 Hz, 3H), 1.02-0.84 (m, 2H); ¹³C NMR (100 MHz, CDCl₃ + DMSO-D₆) δ : 161.8, 154.4, 153.6, 134.7, 134.5, 120.2, 50.9, 42.6, 38.1, 35.3, 31.2, 55.8, 50.9, 42.6, 38.1, 35.3, 31.2, 26.6, 25.4, 23.7, 23.0, 22.9, 19.7; IR (film) v_{max} 2959, 1620, 1593, 1572, 1483, 1463, 1417, 1381, 1369, 1309, 1289, 1221, 1199, 1082, 1065, 1032, 969, 941, 888, 857, 785, 732, 669 cm⁻¹; HRMS (ESI) m/z 285.2217 [(M + H)]⁺; calculated for [C₂₀H₂₈O + H]⁺: 285.2213; MP 67–69 °C.

(Z)-2-isopropyl-1-methoxy-4-((2,6,6-trimethylcyclohex-2-en-1-ylidene)methyl)benzene

(**4b**): 8% yield as colorless gel, $R_f = 0.5$ (in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.08 (d, J = 2.0 Hz, 1H), 7.00 (dd, J = 1.68, 8.32 Hz, 1H), 6.77 (d, J = 8.32 Hz, 1H), 6.41 (s, 1H), 5.57-5.56 (m, 1H), 3.85 (s, 3H), 3.34 (septet, J = 6.92 Hz, 1H), 2.25-2.23 (m, 2H), 1.61 (t, J = 6.44 Hz, 2H), 1.52 (d, J = 1.32 Hz, 3H), 1.23 (d, J = 6.92 Hz, 6H), 1.18 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 155.2, 146.3, 135.9, 132.5, 132.3, 128.4, 127.3, 127.2, 121.3, 109.6, 55.4, 37.3, 35.8, 27.2, 26.6, 24.0, 23.0, 22.7; **IR** (film) v_{max} 2960, 2926, 2870, 1660, 1600, 1496, 1463, 1454, 1382, 1362, 1287, 1249, 1171, 1089, 1034, 813, 737 cm⁻¹; **HRMS** (ESI) m/z 285.2209 [(M + H)]⁺; calculated for [C₂₀H₂₈O + H]⁺: 285.2213.

Scheme 6: Hydrogenation of carbotricycle ±(30)

(±)-7-isopropyl-6-methoxy-1,1,4a-trimethyl-2,3,4,4a,9,9a-hexahydro-1H-fluorene ±(3p): 99% yield as colorless solid, $R_f = 0.6$ (in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.65 (s, 1H), 6.51 (s, 1H), 3.73 (s, 3H), 3.19 (septet, J = 6.88 Hz, 1H), 2.61 (d, J = 9.56 HZ, 2H), 1.78 (t, J = 9.56 Hz, 1H), 1.60-1.48 (m, 1H), 1.39-1.27 (m, 3H), 1.35 (s, 3H), 1.20-1.16 (m, 2H), 1.11 (t, J = 6.84 Hz, 6H), 1.03 (s, 3H), 0.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ : 154.7, 152.6, 134.7, 132.6, 121.9, 104.2, 57.9, 55.7, 45.4, 36.4, 35.1, 33.3, 32.2, 31.2, 29.5, 26.7, 25.6, 23.1, 22.9, 19.0; **IR** (film) v_{max} 2956, 2930, 2863, 1490, 1463, 1414, 1293, 1221, 1197, 1178, 1056, 1045, 881, 839 cm⁻¹; **HRMS** (ESI) m/z 304.2662 [(M + NH₄)]⁺; calculated for [C₂₀H₃₀O + NH₄]⁺: 304.2635; **MP** 57–59 °C.

(Z)-1,2-dimethoxy-4-((2,6,6-trimethylcyclohex-2-en-1-ylidene)methyl)benzene (4a): Colorless gel, $R_f = 0.6$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 6.76-6.71 (m, 3H), 6.34 (s, 1H), 5.52 (s, 1H), 3.85 (s, 3H), 3.84 (s, 3H), 2.19-2.17 (m, 2H), 1.55 (t, J = 6.44 Hz, 2H), 1.47 (d, J = 1.33 Hz, 3H), 1.12 (s, 6H); ¹³C NMR (100 MHz, CDCl₃) δ : 148.1, 147.4, 133.0, 132.1, 128.7, 121.7, 120.9, 112.4, 110.5, 55.83, 55.81, 37.2, 35.8, 27.1, 23.9, 22.9; **IR** (film) v_{max} 2957, 2925, 1658, 1595, 1513, 1464, 1453, 1418, 1268, 1255, 1239, 1156, 1137, 1029, 809, 764 cm⁻¹; **HRMS** (ESI) m/z 273.1858 [(M + H)]⁺; calculated for [C₁₈H₂₄Q₂ + H]⁺: 273.1849.

Scheme 7: Formal total synthesis of (±)-dichroanone (1a) and (±)-taiwaniaquinone H (1b)

(±)-7-isopropyl-1,1,4a-trimethyl-2,3,4,4a-tetrahydro-1H-fluoren-6-ol ±(11): 75% yield as colorless solid, $R_f = 0.4$ (5% EtOAc in hexane); ¹H NMR (400 MHz, CDCl₃) δ : 7.12 (s, 1H), 6.67 (s, 1H), 6.30 (s, 1H), 4.31 (brs, 1H), 3.20 (septet, J = 6.84 Hz, 1H), 1H), 2.06 (dd, J = 12.7, 1.36 Hz, 1H), 1.92 (qt, J = 13.56, 3.52 Hz, 1H), 1.65-1.58 (m, 2H), 1.34 (s, 3H), 1.29 (s, 3H), 1.27 (dd, J = 6.84, 4.08 Hz, 6H), 1.23 (s, 3H), 1.14-0.97 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ : 161.9, 154.1, 150.0, 135.3, 132.0, 120.3, 117.8, 109.2, 50.8, 42.7, 38.1, 35.4, 31.3, 27.1, 25.5, 23.7, 22.9, 22.88, 19.9; **IR** (film) v_{max} 2959, 2925, 2871, 1621, 1593, 1484, 1464, 1417, 1360, 1310, 1289, 1221, 1200, 1065, 1033, 888, 840, 786, 670 cm⁻¹; **HRMS** (ESI) m/z

271.2046 $[(M + H)]^+$; calculated for $[C_{19}H_{26}O + H]^+$: 271.2056; **MP** 104–106 °C, [lit. (McFadden, R. M.; Stoltz, B. M. *J. Am. Chem. Soc.* **2006**, 128, 7738)]: **MP** 105–106 °C.

¹H-NMR, ¹³C-NMR, and Mass Spectra

¹H NMR (400 MHz, CDCl₃) compound \pm (2a)

 ^{13}C NMR (100 MHz, CDCl₃) compound $\pm(2a)$

Scanned copy of mass spectrum (HRMS) of ±(2a)

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

¹H NMR (400 MHz, CDCl₃) compound ±(**2b**)

¹³C NMR (100 MHz, CDCl₃) compound ±(2b)

Scanned copy of mass spectrum (HRMS) of ±(2b)

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

¹H NMR (400 MHz, CDCl₃) compound \pm (2c)

¹³C NMR (100 MHz, CDCl₃) compound ±(2c)

Scanned copy of mass spectrum (HRMS) of $\pm (2c)$

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

 ^{13}C NMR (100 MHz, CDCl₃) compound $\pm(2d)$

Scanned copy of mass spectrum (HRMS) of ±(2d)

¹H NMR (400 MHz, CDCl₃) compound \pm (2e)

¹³C NMR (100 MHz, CDCl₃) compound ±(2e)

Scanned copy of mass spectrum (HRMS) of \pm (2e)

¹H NMR (400 MHz, CDCl₃) compound \pm (2f)

 ^{13}C NMR (100 MHz, CDCl₃) compound ±(2f)

me me

Scanned copy of mass spectrum (HRMS) of ±(2f)

¹H NMR (400 MHz, CDCl₃) compound ±(2g)

¹H NMR (400 MHz, CDCl₃) compound \pm (2g)

ne

Scanned copy of mass spectrum (HRMS) of $\pm(2g)$

¹H NMR (400 MHz, CDCl₃) compound ±(2h)

¹³C NMR (100 MHz, CDCl₃) compound ±(2h)

me

Scanned copy of mass spectrum (HRMS) of \pm (2h)

¹H NMR (400 MHz, CDCl₃) compound \pm (2i)

 ^{13}C NMR (100 MHz, CDCl₃) compound \pm (2i)

Display Report

Scanned copy of mass spectrum (HRMS) of ±(2i)

Me Me MeOH ΌH ± (2j)

¹H NMR (400 MHz, CDCl₃) compound \pm (2j)

 ^{13}C NMR (400 MHz, CDCl₃) compound $\pm(2j)$

Scanned copy of mass spectrum (HRMS) of $\pm (2j)$

¹H NMR (400 MHz, CDCl₃) compound \pm (**2**k)

¹³C NMR (100 MHz, CDCl₃) compound ±(2k)

Scanned copy of mass spectrum (HRMS) of $\pm(2k)$

¹H NMR (400 MHz, CDCl₃) compound \pm (9e)

¹³C NMR (100 MHz, CDCl₃) compound \pm (9e)

Scanned copy of mass spectrum (HRMS) of ±(9e)

¹³C NMR (100 MHz, CDCl₃) compound ±(9f)

Scanned copy of mass spectrum (HRMS) of ±(9f)

¹³C NMR (100 MHz, CDCl₃) compound ±(9g)

¹H NMR (400 MHz, DMSO-D₆) compound \pm (2l)

¹³C NMR (100 MHz, DMSO-D₆) compound ±(2l)

Scanned copy of mass spectrum (HRMS) of ±(2l)

¹H NMR (400 MHz, DMSO-D₆) compound \pm (**2m**)

 ^{13}C NMR (100 MHz, DMSO-D₆) compound ±(**2m**)

Scanned copy of mass spectrum (HRMS) of $\pm(2m)$

¹H NMR (400 MHz, CDCl₃) compound ±(**3a**)

¹³C NMR (100 MHz, CDCl₃) compound ±(**3a**)

Scanned copy of mass spectrum (HRMS) of $\pm(3a)$

¹H NMR (400 MHz, CDCl₃) compound \pm (3b)

¹³C NMR (100 MHz, CDCl₃) compound ±(**3b**)

Scanned copy of mass spectrum (HRMS) of ±(3b)

¹H NMR (400 MHz, CDCl₃) compound \pm (**3c**)

¹³C NMR (100 MHz, CDCl₃) compound ±(3c)

Scanned copy of mass spectrum (HRMS) of $\pm(3c)$

¹H NMR (400 MHz, CDCl₃) compound \pm (**3d**)

¹³C NMR (100 MHz, CDCl₃) compound ±(**3d**)

Scanned copy of mass spectrum (HRMS) of \pm (3d)

¹³C NMR (100 MHz, CDCl₃) compound ±(**3e**)

Scanned copy of mass spectrum (LRMS) of ±(3e)

¹H NMR (400 MHz, CDCl₃) compound \pm (3f)

 ^{13}C NMR (100 MHz, CDCl₃) compound ±(**3f**)

Scanned copy of mass spectrum (HRMS) of $\pm(3f)$

¹H NMR (400 MHz, CDCl₃) compound \pm (**3**g)

¹³C NMR (100 MHz, CDCl₃) compound ±(**3**g)

Scanned copy of mass spectrum (HRMS) of $\pm(3g)$

¹H NMR (400 MHz, CDCl₃) compound ±(**3h**)

¹³C NMR (100 MHz, CDCl₃) compound ±(**3h**)

Scanned copy of mass spectrum (HRMS) of \pm (3h)

¹H NMR (400 MHz, CDCl₃) compound \pm (3i)

¹³C NMR (100 MHz, CDCl₃) compound ±(3i)

Scanned copy of mass spectrum (HRMS) of ±(3i)

¹H NMR (400 MHz, CDCl₃) compound \pm (8)

Scanned copy of mass spectrum (HRMS) of $\pm(8)$

¹H NMR (400 MHz, CDCl₃) compound \pm (3k)

¹³C NMR (100 MHz, CDCl₃) compound ±(**3**k)

Scanned copy of mass spectrum (HRMS) of $\pm(3k)$

¹H NMR (400 MHz, CDCl₃) compound \pm (**3**I)

Scanned copy of mass spectrum (HRMS) of ±(31)

¹H NMR (400 MHz, CDCl₃) compound ±(**3m**)

¹³C NMR (100 MHz, CDCl₃) compound ±(**3m**)

Scanned copy of mass spectrum (HRMS) of ±(3m)

¹H NMR (500 MHz, CDCl₃) compound ±(**3n**)

 13 C NMR (125 MHz, CDCl₃) compound ±(3n)

Scanned copy of mass spectrum (HRMS) of \pm (**3n**)

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

¹H NMR (400 MHz, CDCl₃+DMSO-D₆) compound ±(**30**)

 ^{13}C NMR (100 MHz, CDCl₃+DMSO-D₆) compound ±(**30**)

Scanned copy of mass spectrum (HRMS) of ±(30)

¹H NMR (400 MHz, CDCl₃) compound (**4b**)

¹³C NMR (100 MHz, CDCl₃) compound (**4b**)

			Display	Report				
nalysis Info nalysis Name lethod ample Name omment	D:\Data\user dat HRLCMS-20 Sep Dr. A. Bisai-BK-3	a\JULY-2012\2 bt.m 3-17	4 JUL\Dr. A. I	Bisai-BK-3-17_1	Acquisition Date -A,8_01_2870.d Operator Instrument	7/24/20 Meena micrOT	12 1:10:53 PN Sharma OF-Q II 10336	N 0
equisition Par	rameter	lon Pol	arity	Positive	Set Nebuliz	ar	1 2 Par	
can Begin can End	Active 50 m/z 3000 m/z	Set Ca Set End Set Co	pillary d Plate Offset Ilision Cell RF	4500 V -500 V 130.0 Vpp	Set Dry Hea Set Dry Gas Set Dry Gas	ater s /alve	200 °C 7.0 I/min Waste	
Intens. ×10 ⁷ 1.0	4			-				
0.8- 0.6-	1							
0.4				L	المراجع والمعروب والمعروب والمعروب والمعروب	~~^	1A	$\overline{\mathcal{D}}$
0.0	1 2	3	·····	4	5 6	3	7 Tim	e [i
TIC	C +AII MS			UV Chr	romatogram, 200 nm			_
hinwoll			-			00,7.3	-7.41101 #(4390-4	44
10						00,7.3	4 .4mm #(4390	444
10 0 Intens x10 ⁴ 1.0			290.0360	<u> </u>			7.4-7.4min #(4390	444 38-4
10 10 10 10 10 10 10 0 0 0 0 0 0 0	149,0247	229,1409	290.0360	148	.2688 50	+MS,	7.4-7.4min #(4390 7.4-7.4min #(43	44- 18-4
10 0 Intens x10 ⁴ 1.0 0.5 0.0	149,0247	229.1409 	290.0360	448 413 400	.2688 50 5	+MS,	7.4-7.4min #(4390- 7.4-7.4min #(43 610.180 500	444 38-4
10 0 Intens. x10 ⁴ 1.0 0.5 0.0	149.0247	229.1409 	290.0360	448 413 400	.2608 50 0	+MS, +MS, +MS,	7.4-7.4min #(4390- 610.180 600 7.4-7.4min #(43	444 18-4
10 0 Intens. x10 ⁴ 1.0 0.5 0.0	149.0247	229.1409 	290.0360	448 400 288.0377 290.	.2608 50 50 03 60	+MS, +MS, +MS,	7.4-7.4min #(4390- 610.180 500 7.4-7.4min #(43	14 14 14
Intens. x10 ⁴ 1.0 0.5 0.0 x10 ⁴ 1.0 0.5 0.0 x10 ⁴ 1.0 0.5 28	149.0247 100 80.2622 28	229.1409 200 285.2 3.1976	290.0360 320.04 300	448 413 400 288.0377 289.0392	.2688 50 50 0360 291.0401	+MS, 	7.4-7.4min #(4390- 610.180 500 7.4-7.4min #(43	14 14 18-4
Intens. x10 ⁴ 1.0 0.5 0.0 1.0 0.5 0.0 2500	149.0247 100 80.2622 28	229.1409 200 285.2 3.1976	290.0360 320.0 300 286 2251	448 400 288.0377 289.0392	2688 50 50 0360 291.0401	+MS, 	7.4-7.4min #(43 610.180 600 7.4-7.4min #(43	444 38-4 14
Intens. x10 ⁴ 1.0 0.5 0.0 Intens. x10 ⁴ 1.0 0.5 0.0 2500 2000	149.0247 100 80.2622 28	229 1409 200 285 2 3.1976 285 2 7	290.0360 320.0 300 286,2251	413 400 288.0377 289.0392	2688 505 50 0360 291.0401	+MS, +MS, +MS,	7.4-7.4min #(43 610.180 600 7.4-7.4min #(43	14 14 18-4
Intens. x104 1.0 0.5 0.0 1.0 0.5 0.0 2500 2500 2500 1500	149.0247 100 80.2622 28	229.1409 200 285.2 3.1976 285.2	290.0360 320.0 300 286,2251	448 413 400 288.0377 289.0392	2688 50 50 0360 291.0401	+MS, 	7.4-7.4min #(43 610.180 600 7.4-7.4min #(43 0H260, M+nH .2	444 14 14 18-4
Intens. x104 1.0 0.5 0.0 1.0 0.5 0.0 2500 2000 1500 1000 500	149.0247 100 80.2622 28	229.1409 200 285.2 3.1976 285.2	290.0360 320.0 300 209 286.2251 213 286.2247	448 413 400 288.0377 289.0392 289.0392	2608 50 50 0360 291,0401	+MS, +MS, +MS, C2(7.4-7.4min #(439) 7.4-7.4min #(43 500 7.4-7.4min #(43 DH250, M+nH .2	14 14 18-4

Scanned copy of mass spectrum (HRMS) of (4b)

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

¹H NMR (400 MHz, CDCl₃) compound ±(**3p**)

 13 C(DEPT-135) NMR (100 MHz, CDCl₃) compound ±(**3p**)

¹H NMR (**nOe**) (400 MHz, CDCl₃) compound \pm (**3p**)

¹H NMR (**nOe**) (400 MHz, CDCl₃) compound \pm (**3p**)

Scanned copy of mass spectrum (HRMS) of ±(3p)

¹H NMR (400 MHz, CDCl₃) compound (4a)

 ^{13}C NMR (100 MHz, CDCl₃) compound (4a)

Scanned copy of mass spectrum (HRMS) of (4a)

Electronic Supplementary Material (ESI) for RSC Advances This journal is O The Royal Society of Chemistry 2013

 13 C NMR (100 MHz, CDCl₃) compound ±(11)

Scanned copy of mass spectrum (HRMS) of ±(11)

2/12/13

checkCIF/PLATON (standard)

checkCIF/PLATON (standard)

You have not supplied any structure factors. As a result the full set of tests cannot be run.

No syntax errors found. Please wait while processing CIF dictionary Interpreting this report

Datablock: Badrinath

Bond precision:		C-C = 0.0035 A				Wavelength=0.71073		
Cell:	a=6.8754	(3)	b=10	.7487(5)	c=1	1.799	91(6)	
	alpha=91.	303(3)	beta	=92.041(3)	gam	ma=99	9.150(3)	
Temperature:	298 K							
		Calculat	ed				Reported	
Volume		859.97(7	0				859.97(7)	
Space group		P -1					P -1	
Hall group		-P 1					-P 1	
Moiety formu	la	C20 H28	0				?	
Sum formula		C20 H28	0				C20 H28 O	
Mr		284.42					284.42	
Dx,g cm-3		1.098					1.098	
Z		2					2	
Mu (mm-1)		0.065					0.065	
F000		312.0					312.0	
F000'		312.12						
h,k,lmax		8,12,14					8,12,14	
Nref		3158					3146	
Tmin,Tmax		0.992,0.	994				0.987,0.993	
Tmin'		0.987						
Correction method= MULTI-SCAN								
Data complet	eness= 0.	996		Theta (max	= 25.35	50		
R(reflection	ns)= 0.072	4(2319)		wR2(re	flectio	ns)=	0.2336(3146)	
S = 1.041		Npar	- 196					

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level B

DIFMX01_ALERT_2_B The maximum difference density is > 0.1*ZMAX*1.00						
_refine_diff_density_max given = 1.040						
Test value = 0.800						
PLAT097_ALERT_2_B Large Reported Max. (Positive) Residual Density 1.04 eA-3						
PLAT412_ALERT_2_B Short Intra XH3 XHn H18C H19B 1.78 Ang.						
Y Contraction of the second seco	-					

Alert level C

 DIFMX02_ALERT_1C
 The maximum difference density is > 0.1*ZMAX*0.75

 The relevant atom site should be identified.
 3.10

 PLAT094_ALERT_2C
 Ratio of Maximum / Minimum Residual Density
 3.10

 PLAT20_ALERT_2C
 Hirshfeld Test Diff for C16 -- C17
 6.0 su

 PLAT220_ALERT_2C
 Check High
 Ueq as Compared to Neighbors for C16
 C16

 PLAT241_ALERT_2C
 Check Low
 Ueq as Compared to Neighbors for C2
 C2

Alert level G

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out

vm02b.iucr.org/cgi-bin/checkcif hkl.pl

2/12/13

checkCIF/PLATON (standard)

additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C or E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 05/11/2012; check.def file version of 05/11/2012 **Datablock Badrinath** - ellipsoid plot

2/12/13

checkCIF/PLATON (standard)

Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC Test a new CIF entry

Figure: X-ray structure of carbotricycle $\pm(30)$

1/28/13

checkCIF/PLATON (standard)

checkCIF/PLATON (standard)

You have not supplied any structure factors. As a result the full set of tests cannot be run.

No syntax errors found. Please wait while processing CIF dictionary Interpreting this report

Datablock: shelxl

Bond precisi	ion:	C - C = 0.	0020 A	W	Navelength=0.71073	
Cell:	a-8.0057	(15) b	-19.331(4)	c-9.6263	3(16)	
	alpha=90	b	eta=95.807(11)	gamma=90)	
Temperature	:100 K					
		Calculated	l		Reported	
Volume		1482.1(5)			1482.1(5)	
Space group		P 21/n			P 21/n	
Hall group		-P 2yn			-P 2yn	
Moiety form	ula	C18 H22 O3			?	
Sum formula		C18 H22 O3	1		C18 H22 O3	
Mr		286.36			286.36	
Dx,g cm-3		1.283			1.283	
Z		4			4	
Mu (mm-1)		0.086			0.086	
F000		616.0			616.0	
F000'		616.30				
h,k,lmax		10,24,12			10,24,12	
Nrcf		3150			3123	
Tmin, Tmax		0.983,0.98	3		0.983,0.983	
Tmin'		0.983				
Correction r	nethod= MU	ULTI-SCAN				
Data complet	teness= 0.	991	Theta(max) =	26.730		
R(reflection	ns)= 0.047	2(2085)	wR2(refle	ctions)-	0.1254(3123)	
s = 0.975		Npar= 3	193			
The following A test-nan Click on the hy	ALERTS wer ne_ALERT_ /perlinks for	e generated. _ alert-type _ r more detail	Each ALERT has the _alert-level. s of the test.	format		
• Alert Ic PLAT128_ALEF PLAT194_ALEF PLAT793_ALEF	RT_4_G Alte	rnate Setting sing _cell_me Model has C	of Space-group P21 asurement_refins_u hirality at C5 (Ve	./c sed datum erify)	P21/n 7 S	
0 ALERT Ien 0 ALERT Ien 0 ALERT Ien 3 ALERT Ien 1 ALERT typ 0 ALERT typ	vel A = Mos vel B = A p vel C = Che vel G = Ger e 1 CIF con e 2 Indicato	st likely a ser otentially ser eck. Ensure it neral informa struction/syn r that the str	ious problem - resol ious problem, consic : is not caused by an tion/check it is not s tax error, inconsiste ucture model may b	ve or expla ler carefull omission o omething u nt or missi e wrong or	ain ly or oversight unexpected ng data :deficient	
0 ALERT typ	e 3 Indicato	or that the str	ucture quality may b	e low	dendent	

2 ALERT type 4 Improvement, methodology, query or suggestion

0 ALERT type 5 Informative message, check

It is advisable to attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the purpose of your study may justify the reported deviations and the more serious of these should normally be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. checkCIF was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

Publication of your CIF in IUCr journals

A basic structural check has been run on your CIF. These basic checks will be run on all CIFs submitted for publication in IUCr journals (*Acta Crystallographica, Journal of Applied Crystallography, Journal of Synchrotron Radiation*); however, if you intend to submit to *Acta Crystallographica Section C or E*, you should make sure that full publication checks are run on the final version of your CIF prior to submission.

1/28/13

checkCIF/PLATON (standard)

Publication of your CIF in other journals

Please refer to the *Notes for Authors* of the relevant journal for any special instructions relating to CIF submission.

PLATON version of 05/11/2012; check.def file version of 05/11/2012 **Datablock shelxi** - ellipsoid plot

Download CIF editor (publCIF) from the IUCr Download CIF editor (enCIFer) from the CCDC Test a new CIF entry

Figure: X-ray structure of ±(8)