Supporting Information

Synthesis of dyes CC101-CC103

Compounds 1, 2, 3, 5a, 5b and 5c were synthesized following the literatures.^{1,2,3}

(E)-ethyl 2-cyano-2-(2-methyl-4H-chromen-4-ylidene)acetate (4).

Under N₂ atmosphere, a mixture of **3** (13.1 g, 81.9 mmol), ethyl 2-cyanoacetate (11.3 g, 100 mmol), ammonium acetate (1.54 g), acetic acid (6 mL) was refluxed in toluene (50 mL) for 18 h. Then water was added into the reaction mixture and the mixture was extracted with CH₂Cl₂. The organic layer was removed by rotary evaporation. The residue was purified by column chromatography on silica gel to give **3** as yellow liquid (12.9 g, 62%). ¹H-NMR (400 MHz, Acetone-d₆) δ 8.07 (d, *J* = 7.9 Hz, 1H), 7.75 (t, *J* = 8.7 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.48 – 7.37 (t, *J* = 8.1 Hz, 1H), 6.15 (s, 1H), 4.30 – 4.19 (q, *J* = 11.2 Hz, 2H), 2.41 (s, 3H), 1.07 (m, *J* = 12.2 Hz, 3H). GCT/TOF HRMS-EI (m/z): [M]⁺ calcd for C₁₅H₁₃NO₃, 255.0895; found, 255.0894.

(Z)-ethyl2-cyano-2-(2-((E)-2-(1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)vinyl)-4H-chromen-4-ylide ne)acetate (6a).

4 (500 mg, 1.96 mmol), **5a** (434 mg, 2 mmol) and piperidine (0.5 mL) were refluxed in acetonitrile (30 mL) for 8 h. The reaction solution was removed by rotary evaporation. The residue was purified by column chromatography on silica gel to give **6a** as red liquid (650 mg, 73%). ¹H-NMR (400 MHz, Acetone-d₆) δ 7.50 – 7.38 (m, *J* = 16.5 Hz, 7H), 7.09 (d, *J* = 16.1 Hz, 1H), 7.00 (d, *J* = 16.1 Hz, 1H), 6.18 (s, 1H), 4.24 (q, *J* = 11.2 Hz, 2H), 2.96 – 2.94 (m, 4H), 1.85 (d, *J* = 13.0 Hz, 2H), 1.25 (s, 6H), 1.07 (m, *J* = 12.2 Hz 6H). GCT/TOF HRMS-EI (m/z): [M]⁺ calcd for C₂₉H₃₀N₂O₃, 454.2256; found, 454.2254.

(Z)-ethyl2-cyano-2-(2-((E)-2-(7-methoxy-1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)vinyl)-4H-chro men-4-ylidene)acetate (6b).

A procedure similar to that for **6a** but with compound **5b** (780 mg, 2 mmol) instead of compound **5a**. **6b** as red liquid(711 mg, 75%). ¹H-NMR (400 MHz, Acetone-d₆) δ 7.84 (s, 1H), 7.50 – 7.38 (m, 4H), 7.09 (d, J = 16.1 Hz, 1H), 7.00 (d, J = 16.1 Hz, 1H), 6.76 (s, 1H), 6.18 (s, 1H), 4.24 (q, J = 11.2 Hz, 2H), 3.89 (s, 3H), 2.96 – 2.94 (m,

4H), 1.85 (d, *J* = 13.0 Hz, 2H), 1.25 (s, 6H), 1.07 (m, *J* = 12.2 Hz, 6H). GCT/TOF HRMS-EI (m/z): [M]⁺ calcd for C₃₀H₃₂N₂O₄, 484.2362; found, 484.2364.

(Z)-ethyl2-cyano-2-(2-((E)-2-(2,4-dihexyl-7-methoxy-1,2-dimethyl-1,2,3,4-tetrahydroquinolin-6-yl)vinyl)-4 H-chromen-4-ylidene)acetate (6c).

A procedure similar to that for **6a** but with compound **5c** (494 mg, 2 mmol) instead of compound **5a**. **6c** as red liquid(856 mg, 70%). ¹H-NMR (400 MHz, Acetone-d₆) δ 7.84 (s, 1H), 7.55 – 7.37 (m, 4H), 7.08 (d, *J* = 16.0 Hz, 1H), 6.99 (d, *J* = 16.1 Hz, 1H), 6.75 (s, 1H), 6.20 (s, 1H), 4.30 – 4.19 (q, *J* = 11.2 Hz, 2H), 3.90 (s, 3H), 2.98 – 2.94 (m, 4H), 1.85 (d, *J* = 13.0 Hz, 2H), 1.59 – 1.45 (m, *J* = 16.2 Hz, 7H), 1.32 – 1.25 (m, *J* = 13.2 Hz, 19H), 0.88 (t, *J* = 11 Hz, 6H). GCT/TOF HRMS-EI (m/z): [M]⁺ calcd for C₄₀H₅₂N₂O₄, 624.3927; found, 624.3927.

(Z)-2-cyano-2-(2-((E)-2-(1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)vinyl)-4H-chromen-4-ylidene) acetic acid (7a).

6a (650 mg, 1.43 mmol) and 2 M aqueous solution of LiOH (5 mL) were heated to 40 °C over night. Then water was added into the reaction mixture and the mixture was extracted with CH_2Cl_2 . The organic layer was removed by rotary evaporation. The residue was purified by column chromatography on silica gel to give **7a** as red solid (530 mg, 87%). ¹H-NMR (400 MHz, Acetone-d₆) δ 7.50 – 7.38 (m, *J* = 16.5 Hz, 7H), 7.09 (d, *J* = 16.1 Hz, 1H), 7.00 (d, *J* = 16.1 Hz, 1H), 6.18 (s, 1H), 2.96 – 2.94 (m, 4H), 1.85 (d, *J* = 13.0 Hz, 2H), 1.25 (s, 6H), 1.07 (m, *J* = 12.2 Hz 3H). GCT/TOF HRMS-EI (m/z): [M]⁺ calcd for C₂₇H₂₆N₂O₃, 426.1943; found, 426.1942.

(Z)-2-cyano-2-(2-((E)-2-(7-methoxy-1,2,2,4-tetramethyl-1,2,3,4-tetrahydroquinolin-6-yl)vinyl)-4H-chrome n-4-ylidene)acetic acid (7b).

A procedure similar to that for **7a** but with compound **6b** (711 mg, 1.5 mmol) instead of compound **6a**. **6b** as red liquid(580 mg, 85%). ¹H-NMR (400 MHz, Acetone-d₆) δ 7.84 (s, 1H), 7.50 – 7.38 (m, 4H), 7.09 (d, J = 16.1 Hz, 1H), 7.00 (d, J = 16.1 Hz, 1H), 6.76 (s, 1H), 6.18 (s, 1H), 3.89 (s, 3H), 2.96 – 2.94 (m, 4H), 1.85 (d, J = 13.0 Hz, 2H), 1.25 (s, 6H), 1.07 (m, J = 12.2 Hz 3H). GCT/TOF HRMS-EI (m/z): [M]⁺ calcd for C₂₈H₂₈N₂O₄, 456.2049; found, 456.2049.

(Z)-2-cyano-2-(2-((E)-2-(2,4-dihexyl-7-methoxy-1,2-dimethyl-1,2,3,4-tetrahydroquinolin-6-yl)vinyl)-4H-ch romen-4-ylidene)acetic acid (7c).

A procedure similar to that for **7c** but with compound **6c** (856 mg, 1.4 mmol) instead of compound **6a**. **6c** as red liquid(650 mg, 78%). ¹H-NMR (400 MHz, Acetone-d₆) δ 7.84 (s, 1H), 7.55 – 7.37 (m, 4H), 7.08 (d, *J* = 16.0 Hz, 1H), 6.99 (d, *J* = 16.1 Hz, 1H), 6.75 (s, 1H), 6.20 (s, 1H), 3.90 (s, 3H), 2.98 – 2.94 (m, 4H), 1.85 (d, *J* = 13.0 Hz, 2H), 1.59 – 1.45 (m, *J* = 16.2 Hz, 7H), 1.32 – 1.25 (m, *J* = 13.2 Hz, 16H), 0.88 (t, *J* = 11 Hz, 6H). GCT/TOF HRMS-EI (m/z): [M]⁺ calcd for C₃₇H₄₆N₂O₃, 566.3508; found, 566.3508.

Fig.S1 a) UV-Vis spectra of CC101 in different solvents (CH₃CH₂OH, THF, CH₃CN and CH₂Cl₂); b) UV-Vis spectra of CC101 in CH₃CN in the presence of acid (acetic acid, 2×10^{-5} M) or base (LiOH, 2×10^{-5} M)

dye	λ_{\max} (nm)	oscillator strength f
CC101	384	0.3055
	495	1.0698
CC102	381	0.2763
	490	1.0847
CC103	381	0.2980
	492	1.0933

Fig.S2 Computed excitation wavelength and oscillator strength at a B3LYP/6-31G(d) level under vacuum

condition.

Compound 7a

Reference

- [1] Urs Séquin, Helvetica Chimica Acta, 1981, 64, 2654-2664.
- [2] Yan Hao, Xichuan Yang, Jiayan Cong, Anders Hagfeldt, Licheng Sun, Tetrahedron, 2012, 68, 552-558.

[3] Ming Cheng, Xichuan Yang, Jiajia Li, Cheng Chen, Jianghua Zhao, Yu Wang, Licheng Sun, Chem. Eur. J.,

2012, 18, 16196-16202.