Supplementary Information

Reaction-based probes for Co^{2+} and Cu^+ with dual output modes: fluorescence live cell imaging

Debabrata Maity,[‡] Anand Raj,[‡] D. Karthigeyan,[§] Tapas K. Kundu[§] and T. Govindaraju^{*‡}

^{*}Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore-560064, Karnataka, India. Fax: +91 80 22082627; Tel: +91 80 22082969.

E-mail: tgraju@jncasr.ac.in.

[§]Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Jakkur P.O., Bangalore-560064, Karnataka, India.

Contents

1. General method for measurements of photophysical properties	page 2
2. Additional photophysical study	page 3-6
3. pH study	page 7-8
4. Mass study of complexes	page 9-10
5. GSH dependent study	page 11-12
6. Colourimetric changes	page 13
7. NMR spectra	page 14-17
8. HRMS	page 18
9. References	page 19

1. General method for measurements of photophysical properties

UV-vis spectra were recorded on a Perkin Elmer Lambda 900 spectrophotometer and fluorescence spectra were recorded on a Perkin Elmer LS 55 spectrophotometer. 1 cm cells were used for emission titration. For titrations stock solution of ligands **ResCo** and **ResCu** were prepared ($c = 2000 \mu$ M) in DMSO. The solutions of guest cations were prepared in DMSO in the order of 10^{-3} M. Working solutions of **ResCo** and **ResCu** and metal ions were prepared from the stock solutions. Excitation was carried out at 540 nm for **ResCo** and **ResCu** with 10 nm excitation and 10 nm emission slit widths.

2. Additional photophysical measurements

Fig. S1 Absorption spectra (top) and ratiometric responses (bottom) of **ResCo** (10.0 μ M) upon addition of 0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0, 15.0, 20.0 μ M of Co²⁺ after 2 h in aqueous solution (50 mM HEPES, pH 7.2, 2 mM GSH).

Fig. S2 Absorption spectra (top) and ratiometric responses (bottom) of **ResCu** (10.0 μ M) upon addition of 0.0, 0.2, 0.5, 0.8, 1.0, 2.0, 4.0, 6.0, 8.0, 10.0 μ M of Cu⁺ after 2 h in aqueous solution (50 mM HEPES, pH 7.2, 2 mM GSH).

Fig. S3 Fluorescence responses of **ResCo** (1.0 μ M) upon addition of 0.0, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 10.0 μ M of Co²⁺ after 2 h in aqueous solution (50 mM HEPES, pH 7.2, 2 mM GSH) ($\lambda_{ex} = 540$ nm).

Fig. S4 Fluorescence responses of **ResCu** (1.0 μ M) upon addition of 0.0, 0.1, 0.25, 0.5, 0.75, 1.0, 2.5, 5.0, 10.0 μ M of Cu⁺ after 2 h in aqueous solution (50 mM HEPES, pH 7.2, 2 mM GSH) (λ_{ex} = 540 nm).

3. pH study

Fig. S5 Effect of pH on the 'switch-on' emission of **ResCo**. Red trace: **ResCo** (1.0 μ M) with 10.0 μ M of Co²⁺ after 2 h in aqueous solution. Black trace: **ResCo** (1.0 μ M) without Co²⁺ after 2 h in aqueous solution.

Fig. S6 Effect of pH on the 'switch-on' emission of **ResCu**. Red trace: **ResCu** (1.0 μ M) with 10.0 μ M of Cu⁺ after 2 h in aqueous solution. Black trace: **ResCu** (1.0 μ M) without Cu⁺ after 2 h in aqueous solution.

4. Mass study

Calculated m/z = 387:04 for $C_{15}H_{17}CoN_3O_3 + K^+ + 2H^+$ (N₃O-Co complex)

Fig. S7 ESI mass spectra (positive ion mode) for the reaction of 10.0 μ M **ResCo** with 100.0 μ M Co²⁺ in water in presence of 100.0 μ M GSH. Mass peaks observed at 387 ([M + K + 2H]⁺) and 406 ([M + Na + K - 2H]⁺) are corresponds to N₃O-Co complex C₁₅H₁₇CoN₃O₃. Mass peak observed at 469 ([M + H]⁺) correspond to **ResCo** (calculated 468.18 for C₂₇H₂₄N₄O₄). Mass peak observed at 308 ([M + H]⁺) correspond to GSH.

Calculated m/z = 396.06 for $C_{19}H_{17}CuN_4O_2$ (N₄-Cu complex)

Fig. S8 ESI mass spectra (positive ion mode) for the reaction of 10.0 μ M **ResCu** with 100.0 μ M Cu⁺ in water in presence of 100.0 μ M GSH. Mass peaks observed at 396 ([M + H]⁺) and 418 ([M + Na – H]⁺) are correspond to N₄-Cu complex C₁₉H₁₇CuN₄O₂. Mass peak observed at 578 ([M + Cu]⁺) correspond to copper bound **ResCu** (calculated 578.12 for C₃₁H₂₅CuN₅O₃). Mass peaks observed at 307 ([M]⁺), 328 ([M + Na – 2H]⁺), 350([M + 2Na – 3H]⁺) is corresponds to GSH.

5. GSH dependent study

Fig. S9 Time dependent fluorescence study of 1.0 μ M **ResCo** incubated with 10 μ M of Co²⁺ in aqueous solution (50 mM HEPES, pH 7.2) with (**black trace**) and without (**red trace**) 2 mM GSH.

Fig. S10 Time dependent fluorescence study of 1.0 μ M **ResCu** incubated with 10 μ M of Cu⁺ in aqueous solution (50 mM HEPES, pH 7.2) with (**black trace**) and without (**red trace**) 2 mM GSH.

6. Colourimetric changes

Fig. S11 Colourimetric changes of **ResCo** (10.0 μ M) after addition of 20.0 μ M of Co²⁺ in aqueous solution (50 mM HEPES, pH 7.2, 2 mM GSH)

Fig. S12 Colourimetric changes of **ResCu** (10.0 μ M) after addition of 20.0 μ M of Cu⁺ in aqueous solution (50 mM HEPES, pH 7.2, 2 mM GSH)

7. NMR spectra

¹H NMR spectrum of ResCo

¹³C NMR spectrum of ResCo

¹H NMR spectrum of ResCu

¹³C NMR spectrum of ResCu

8. HRMS spectra

Fig. S13 HRMS spectra of **ResCo.** Observed $m/z = 469.1855 [M + H]^+$ and calculated m/z = 469.1876 for $C_{27}H_{25}N_4O_4$.

Fig. S14 HRMS spectra of **ResCu.** HRMS: observed $m/z = 516.2022 [M + H]^+$ and calculated m/z = 516.2036 for $C_{31}H_{26}N_5O_3$.

9. References

- 1 H. Y. Au-Yeung, E. J. New and C. J. Chang, Chem. Commun., 2012, 48, 5268-5270.
- 2 B. Lucchese, K. J. Humphreys, D. Lee, C. D. Incarvito, R. D. Sommer, A. L. Rheingold and K. D. Karlin, *Inorg. Chem.*, 2004, 43, 5987-5998.