Electronic Supporting Information (ESI)

FRET operated sensor for intracellular pH mapping: Strategically improved efficiency on moving from anthracene to naphthalene derivative

Arnab Banerjee^a, Animesh Sahana^a, Sisir Lohar^a, Bidisha Sarkar^b, Subhra Kanti Mukhopadhyay^b and Debasis Das^a*

^aDepartment of Chemistry, The University of Burdwan, Burdwan – 713104, West Bengal, India,

^bDepartment of Microbiology, The University of Burdwan, , Burdwan – 713104, West Bengal, India,

Debasis Das < e-mail: ddas100in@yahoo.com >; Tel: +91-342-2533913; Fax: +91-342-2530452

1. Calculation of Quantum Yield

Fluorescence quantum yields (Φ) were estimated by integrating the area under the fluorescence curves using the equation¹,

Where A was the area under the fluorescence spectral curve, OD was optical density of the compound at the excitation wavelength and η was the refractive indices of the solvent. Anthracene (quantum yield is 0.27 in ethanol)² and tris(2,2'-bipyridyl)ruthenium(II) ($\Phi = 0.042$ in water)³ were used as quantum yield standard for measuring the quantum yields at 365 nm and 450 nm for **ANC** and **AAC** respectively both for their protonated and deprotonated forms.

2. Derivation of the equations which are used to determine the pK_a

In the acidic pH ranges both the -C=N- groups of AAC and ANC remain protonated.

$$BH + 2H^+ \Longrightarrow BH_3^{2+}$$

$$K_{a} = \frac{[BH_{3}^{2+}]}{[BH][H^{+}]^{2}}$$

or,
$$\log K_a = -2\log[H^+] + \log \frac{[BH_3^{2+}]}{[BH]}$$

or,
$$2pH = -pK_a - \log \frac{[BH_3^{2+}]}{[BH]}$$

or, $2pH = -pK_a - \log \frac{[Protonated form]}{[Neutral form]}$ _____(i)

Upon lowering the pH, the fluorescence intensity may increase or decrease.

If fluorescence intensity increases due to the protonated form, the equation (i) can be written as

$$2 \text{ pH} = -pK_a - \log \frac{F_x - F_{\min}}{F_{\max} - F_x}$$
------ (ii)

where,

 F_{max} = Maximum intensity at the wavelength of the maximum emission due to the protonated form (BH_3^{2+}).

F_{min}= Minimum intensity at same wavelength.

 F_x = Intensity at an intermediate pH at the same wavelength.

 pK_{a1} of **ANC** has been calculated by using equation (ii). Here F_x , F_{max} and F_{min} were measured at 600 nm, the wavelength at the emission maximum of ANC in the acidic range.

If fluorescence intensity decreases due to protonated form, the working formula becomes

$$2 \text{ pH} = -pK_a - \log \frac{F_{max} - F_x}{F_x - F_{min}}$$
 - ------ (iii)

where

 F_{max} = Maximum intensity at the wavelength of maximum emission due to the neutral form (*BH*).

 F_{min} = Minimum intensity at the same wavelength.

 F_x = Intensity at an intermediate pH at the same wavelength.

 pK_{a1} of **AAC** has been calculated by using equation (iii). Here F_x , F_{max} and F_{min} were measured at 537 nm.

In the basic pH range the -OH of AAC and ANC is deprotonated

 $BH = B^{-} + H^{+}$

 $\mathbf{K}_{\mathbf{a}} = \frac{[B^-][H^+]}{[BH]}$

or, $\log K_a = \log[H^+] + \log \frac{[B^-]}{[BH]}$

or,
$$-pH = -pK_a - \log \frac{[B^-]}{[BH]}$$

or, $-pH = -pK_a - \log \frac{[Deprotonated form]}{[Neutral form]}$

If fluorescence intensity .increases due to deprotonated form

then,

$$pH = pK_a + log \ \frac{F_x - F_{min}}{F_{max} - F_x}$$

where,

 F_{max} = Maximum intensity at the wavelength of maximum emission due to the deprotonated form

 $(B^{-}).$

F_{min}= Minimum intensity at the same wavelength.

 F_x = Intensity at an intermediate pH at the same wavelength.

 pK_{a2} of AAC and ANC have been calculated using this equation. Here F_x , F_{max} and F_{min} are measured at 537 nm and 535 nm for AAC and ANC respectively.

3. Figures

Figure S1. ¹H NMR spectrum of **AA** in CDCl₃

Figure S2. ¹³C NMR spectrum of AA in CDCl₃

Figure S3. Expansion of 13 C NMR spectrum of AA in CDCl₃

Figure S4. QTOF –MS ES^+ spectrum of AA

Figure S5. ¹H NMR spectrum of AAC in CDCl₃

Figure S6. ¹³C NMR spectrum of AAC in DMSO

Figure S7. Expansion of ¹³C NMR spectrum of AAC in DMSO

Figure S8. QTOF $-MS ES^+$ spectrum of AAC

- 1

Figure S9. 1 H NMR spectrum of **AN** in CDCl₃.

Figure S10. ¹³C NMR spectrum of **AN** in CDCl₃

Figure S11. QTOF –MS ES^+ spectrum of AN

Figure S12. ¹H NMR spectrum of **ANC** in CDCl₃

Figure S13. ¹³C NMR spectrum of **ANC** in CDCl₃

Figure S14. Expansion of ¹³C NMR spectrum of ANC in CDCl₃

Figure S15.QTOF –MS ES⁺ spectrum of ANC

Figure S16. ¹H NMR spectrum of **AP** in CDCl₃

Figure S17.QTOF –MS ES^+ spectrum of AP

Figure S18. ¹H NMR spectrum of **APC** in CDCl₃

Figure S19. ¹³C NMR spectrum of **APC** in DMSO-d⁶

Figure S20.QTOF –MS ES⁺ spectrum of **APC**

Figure S21. ¹H NMR spectrum of **AAP** in CDCl₃

Figure S22. QTOF $-MS ES^+$ spectrum of **AAP**

Figure S23. ¹H NMR spectrum of **ANP** in CDCl₃

Figure S24.QTOF –MS ES⁺ spectrum of ANP

Figure S25. Changes in the absorption spectra of AAC (100 μ M) as a function of pH (5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 11.5, 12.0 respectively). Inset: a, b and c are acidic, neutral and basic pH respectively. Solvent: methanol-water (7:3, v/v).

Figure S26. Changes in the absorption spectra of **ANC** (100 μ M) as a function of pH. Red lines indicate pH values: 6.5, 6.0, 5.5, 5.0, 4.5, 4.0, 3.5, 3.0 and 2.0; green lines indicate pH values: 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 11.0, and 12.0 (in both the cases, from bottom to top). Inset: a, b and c are acidic, neutral and basic pH respectively. Solvent: methanol-water (7:3, v/v).

Figure S27. Emission spectra of AAC at different pH: pH 11.0 (green), 7.0 (blue), 5.0 (black). $\lambda_{Ex} = 380$ nm.

Figure S28. Emission spectra of **AAP** at different pH: pH 10.0 (blue), 7.0 (red), 4.0 (black). $\lambda_{Ex} = 380$ nm.

Figure S29. Emission spectra of **ANP** at different pH: pH 10.0 (blue), 7.0 (red), 4.0 (black). $\lambda_{Ex} = 360$ nm.

Figure S30. Emission spectra of **APC** at different pH: pH 10.0 (green), 7.0 (deep green), 4.0 (black). $\lambda_{Ex} = 440$ nm.

Figure S31. Estimation of pK_{a1} of AAC from fluorescence experiment using equation (i) ($\lambda_{Em} = 537 \text{ nm}$)

Figure S32. Estimation of pK_{a2} of AAC from fluorescence experiment using equation (iii) ($\lambda_{Em} = 537 \text{ nm}$)

Figure S33. Estimation of pK_{a1} of ANC from fluorescence experiment using equation (ii) ($\lambda_{Em} = 600 \text{ nm}$)

Figure S34. Estimation of pK_{a2} of ANC from fluorescence experiment using equation (iii) $(\lambda_{Em} = 535 \text{ nm})$

Figure S35. Cell viability graphs: brown line for control, green line for **AAC** and red line for **ANC**

Reference

- (1) E. Austin, M. Gouterman, *Bioinorg. Chem.*, 1978, **9**, 281.
- (2) W. H. Melhuish, J. Phys. Chem., 1961, 65, 229.
- (3) J. V. Houten, R. J. Watts, J. Am. Chem. Soc., 1976, 98, 4853.