Electronic Supplementary Information

Importance of Alkyl Chain-Length on the Self-Assembly of New Ni(qdt)₂ Complexes and Charge Transport Properties

Xiong-Bo Yang,^{*a*} Li Zhou,^{*a*} Long-Biao Huang,^{*a*} Jia-Ju Xu,^{*a*} Ye Zhou,^{*a*} Su-Ting Han,^{*a*} Zong-Xiang Xu,^{*b*} Chor-Yue Lau^{*c*}, Micheal H. W. Lam^{*d*}, Wai-Yeung Wong^{*e*} and V. A. L. Roy*^{*a*}

^aCenter of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science

City University of Hong Kong, Kowloon Tong, Hong Kong SAR

E-mail: val.roy@cityu.edu.hk

^bDepartment of Chemistry, South University of Science and Technology of China, ShenZhen, GuangDong, P. R. China

^cKnowledge Transfer Office, City University of Hong Kong, Kowloon Tong, Hong Kong SAR

^d Department of Biology and Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong SAR ^eInstitute of Molecular Functional Materials, Department of Chemistry and Institute of Advanced Materials, Hong Kong Baptist University, Hong Kong SAR.

Experimental

General information

All the chemical reagents used in the experiments were purchased without further purification. All reactions were carried out under an inert atmosphere of dry N₂. NMR spectra were recorded on the Bruker-400 MHz spectrometer, and referenced to the residual proton solvent signals. Elemental analyses were performed at Elementary VARIOEL Micro Cube. Mass spectra were recorder with a mass spectrometer API-150EX. Single crystal X-ray diffraction data was collected by a Bruker X8 Proteum diffractometer using Cu-k α radiation ($\lambda = 1.54178$ Å) at 133 k. Lattice determination and data collection was performed using built-in SADSBS program of the program suite. The structure was solved by direct method (SHELXS) and refined by full-matrix least squares on F² (SHELXL) using the SHELX-97 program suite.

SEM was performed on a FEI/Philips XL30 environmental scanning electron microscope. TEM images and SAED patterns were obtained using a FEI / Philips Tecnai 12 BioTWIN transmission electron microscope. GIXRD data were collected using a Bruker D8 Advance (θ/θ) diffractometer with a Göbel mirror attachment. The bottom gate bottom contact FET devices were fabricated by drop-casting the complex in dimethyl sulfoxide (DMSO) on the Si substrate with 100 nm SiO₂ as dielectric layer. The source and drain contacts were prefabricated using a standard photolithography lift-off process followed by E-beam evaporation of 100 nm Au contacts. The FET devices were characterized by Keithley 4200 semiconducting parameter analyzer. Field-effect mobility (μ) was calculated in the saturation regime of drain current using the following equation:

$$I_{DS} = \frac{W}{2L}C_i\mu(V_{GS} - V_T)^2$$

Where, W is the channel width, L is the channel length, C_i is the capacitance per unit area of the SiO₂ dielectric, I_{DS} is the drain current, V_{GS} and V_T are the gate and threshold voltages, respectively.

Synthesis of nickel complexes

Single Crystal Structure Analysis:

Table S1. Crystal data for X-ray structures of complexes C-5, C-6 and C-7

Compound name	C-5.2H ₂ O	C-6	C-7.2H ₂ O
Crystal system	Triclinic	Monoclinic	Monoclinic
/Space group	P-1	P 21/c	P 21/c
Lattice parameters	$a = 8.1895(2)\text{\AA}$ $b = 8.5987(3)\text{\AA}$ $c = 16.7988(2)\text{\AA}$ $\alpha = 92.215(2)^{\circ}$ $\beta = 102.812(1)^{\circ}$ $\gamma = 105.961(2)^{\circ}$ $V = 1102.75(6)\text{\AA}^{3}$	$a = 14.8356(2)\text{\AA}$ $b = 10.8116(2)\text{\AA}$ $c = 13.3564(2)\text{\AA}$ $\alpha = 90^{\circ}$ $\beta = 93.711(1)^{\circ}$ $\gamma = 90^{\circ}$ $V = 2137.83(6)\text{\AA}^{3}$	$a = 15.2630(3)\text{\AA}$ $b = 9.2809(2)\text{\AA}$ $c = 16.8903(3)\text{\AA}$ $\alpha = 90^{\circ}$ $\beta = 93.097(2)^{\circ}$ $\gamma = 90^{\circ}$ $V = 2389.09(8)\text{\AA}^{3}$
Molecular Formula	$C_{46}H_{50}N_8NiO_2S_4$	$C_{48}H_{50}N_8NiS_4$	$C_{50}H_{58}N_8NiO_2S_4$
Molecular Weight	933.90	925.93	989.99
Z	2	2	2
$D_x(gcm^{-3})$	1.406	1.438	1.376
μ , mm ⁻¹ (Cuk α)	2.793	2.841	2.609
F(000)	490.0	972.0	1044.0
Max θ, °	67.390	66.990	66.990
Observed data [I>2 σ]	3018	8371	9078
Parameters/restrain	273/2	278/0	302/2
R_1^{a}/wR_2^{b}	0.0662/0.1888	0.026, 0.071	0.0307, 0.0859
Goodness of fit S	1.041	1.062	1.033
Residual electron density	0.204	0.247	0.464

Fig.S1 Crystal structures (a, b, and c) with bond distances of C-5, C-6, and C-7, respectively.

Fig.S2 UV-vis absorption spectra of solution and crystal of C-5 (a) and C-7 (b).

Fig.S3 (a) Output characteristics and (b) transfer characteristics of the FET device of C-5 (c) Output characteristics and (d) transfer characteristics of the FET device of C-7.