Supporting Information

Highly efficient and practical synthesis of functionalized 1,5-dienes via

Pd(II)-catalyzed halohomoallylation of alkynes

Jianxiao Li, Shaorong Yang*, Liangbin Huang, Huoji Chen and Huanfeng Jiang*

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, PR China

jianghf@scut.edu.cn; lisryang@scut.edu.cn

List of Contents

I. General method	S2
II. Optimization of the reaction conditions	S3
III. General procedure for the synthesis of 3 and 4	S4
IV. Analytical data for compounds 3 and 4	S5
V. ¹ H and ¹³ C NMR spectra of compounds 3 and 4	S15
VI. Studies on stereochemistry of 3a	S 41

I. General method

Melting points were measured with a BÜCHI B-545 melting point instrument and were uncorrected. ¹H and ¹³C NMR spectra were recorded using a Bruker Avance 400 MHz NMR spectrometer. The chemical shifts are referenced to signals at 7.24 and 77.0 ppm, respectively, and chloroform is solvent with TMS as the internal standard. IR spectra were obtained either as potassium bromide pellets or as liquid films between two potassium bromide pellets with a Bruker Vector 22 spectrometer. GC–MS was obtained using electron ionization. HRMS (EI) was carried out on a MAT 95XP (Thermo). TLC was performed by using commercially prepared 100–400 mesh silica gel plates (GF254) and visualization was effected at 254 nm. The ionic liquids ([Bmim]Cl,¹ [Bmim]BF₄,² [Bmim]PF₆,² [C₂OHmim]Cl,³ [BuPy]Cl,¹ [C₂O₂mim]Cl⁴ and [C₂O₂mim]Br⁴) were synthesized using the procedure reported by other authors. The bromoalkynes⁵ and chloroalkynes⁶ were prepared according to the literature. Other reagents were purchased as reagent grade and used without further purification.

Fig. 1 Ionic liquids applied in this work.

REFERENCES

[1] J. G. Huddleston, H. D. Willauer, R. P. Swatloski, A. E. Visser and R. D. Rogers, *Chem. Commun.*, 1998, 1765.

[2] S. Park and R. J. Kazlauskas, J. Org. Chem., 2001, 66, 8395.

[3] L. C. Branco, J. N. Rosa, J. J. Moura Ramos and C. A. M. Afonso, *Chem. Eur. J.*, 2002, **8**, 3671.

[4] C.-X. Miao, L.-N. He, J.-Q. Wang and J.-L. Wang, Adv. Synth. Catal., 2009, 351, 2209.

[5] (a)Y. Li, X. Liu, H. Jiang, B. Liu, Z. Chen and P. Zhou, *Angew. Chem., Int. Ed.*, 2011, 50, 6341; (b) Y. Li, J. Zhao, H. Chen, B. Liu and H. Jiang, *Chem. Commun.*, 2012, 48, 3545.

[6] Y. Sasson and O. W. Webster, J. Chem. Soc., Chem. Commun., 1992, 1200.

II. Optimization of the reaction conditions

				Cl Br			
	. –		cat. Pd	\rightarrow			
	Br +	_/		=\			
	1a	2a OH	rt 📃				
		ЦА	Dd oatalyst	CC wield			
Entry	Ionic liquid	(mL)	Fu catalyst	(%)	Z/E		
1	[Dmim]Cl	(IIIL)	D4Cl	(70)			
1		-	$PdCl_2$	0	-		
2	[Bmim]Cl	HCI (0.1)	-	0	-		
3	[Bmim]Cl	HCl (0.1)	PdCl ₂	46	98/2		
4 ^b	[Bmim]Cl	HCl (0.1)	PdCl ₂	48	98/2		
5	[Bmim]Cl	HCl (0.1)	PdBr ₂	43	98/2		
6	[Bmim]Cl	HCl (0.1)	Pd(OAc) ₂	35	98/2		
7	[Bmim]Cl	HCl (0.1)	Pd(PPh ₃) ₄	0	-		
8	[Bmim]Cl	HCl (0.1)	$Pd(PPh_3)_2Cl_2$	29	98/2		
9	[Bmim]Cl	HCl (0.15)	PdCl ₂	83	98/2		
10	[Bmim]Cl	HCl (0.25)	PdCl ₂	92	> 98/2		
11 ^c	[Bmim]Cl	HCl (0.25)	PdCl ₂	90	> 98/2		
12	[Bmim]BF ₄	HCl (0.25)	PdCl ₂	71	87/13		
13	[Bmim]PF ₆	HCl (0.25)	PdCl ₂	70	79/21		
14	[C ₂ OHmim]Cl	HCl (0.25)	PdCl ₂	63	94/6		
15	[C ₂ O ₂ mim]Cl	HCl (0.25)	PdCl ₂	72	95/5		
16	-	HCl (0.25)	PdCl ₂	72	66/34		
17	HOAc	HCl (0.25)	PdCl ₂	80	67/33		
18	H ₂ O	HCl (0.25)	PdCl ₂	51	55/45		
19	CH ₃ CN	HCl (0.25)	PdCl ₂	trace	-		
20	[Bmim]Cl	HOAc	PdCl ₂	trace	-		
^a Reaction conditions: 1a (0.5 mmol), 2a (0.6 mmol) and Pd catalyst (3 mol%) in 1 mL of							
solvents under the atmosphere of air at room temperature. Reaction was monitored by TLC for							
the completion of the reaction. The ratios of $1Z/1E$ were determined by GC. ^b 5mol% PdCl ₂ was							
used ^c 1.0 equivalent CuCl ₂ was used							

Table 1 Optimization of the Reaction Conditions^a

III. General procedure for the synthesis of 3 and 4

A mixture of alkynes **1** (0.5 mmol), **2** (0.6 mmol), palladium chloride (3.2 mg, 3 mol%), ionic liquid (0.5 mL), HX (0.25 mL) in a test tube (10 mL) equipped with a magnetic stirring bar. The mixture was stirred under the atmosphere of air at room temperature. After the reaction was completed, 10 mL ethyl acetate (3×10 mL) was added into the tube. The combined organic layers were washed with brine to neutral, dried over MgSO₄, and concentrated in vacuum. Purification of the residue on a preparative TLC afforded the desired products.

IV. Analytical data for compounds 3 and 4

(Z)-(2-bromo-1-chlorohexa-1,5-dien-1-yl)benzene (3a)

Yield: 83% (112.5 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.30 (m, 5H), 5.71-5.61 (m, 1H), 4.99 (dd, J =10.2, 1.2 Hz, 1H), 4.96 (dd, J = 17.2, 1.2 Hz, 1H), 2.54-2.48 (m, 2H), 2.36-2.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 136.2, 131.5, 128.9, 128.7, 128.6, 126.7, 115.9, 37.5, 32.9 ppm; v_{max} (KBr)/cm⁻¹ 3076, 2980, 1635, 1445, 1490, 718 ; MS (EI) m/z 115, 150, 155, 191, 193, 231, 232, 270; HRMS(EI) calcd for C₁₂H₁₂ClBr 269.9811, found 269.9804.

(Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-ethylbenzene (3b)
Yield: 90% (134.1 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ
7.24-7.18 (m, 4H), 5.73-5.62 (m, 1H), 5.01 (dd, J =10.4, 1.2 Hz, 1H), 4.97

(dd, J = 16.4, 1.2 Hz, 1H), 2.66 (q, J = 7.6 Hz, 2H), 2.55-2.52 (m, 2H), 2.37-2.32 (m, 2H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 136.3, 134.7, 131.7, 128.6, 128.0, 126.2, 115.9, 37.5, 33.0, 28.6, 15.3 ppm; v_{max} (KBr)/cm⁻¹ 3077, 2960, 1600, 1456, 760 ; MS (EI) m/z 115, 128, 149, 150, 178, 229, 231, 257, 259, 271, 298; HRMS(EI) calcd for C₁₄H₁₆ClBr 298.0124, found 298.0121.

(Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-fluorobenzene (3c)

Yield: 88% (126.7 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.32-7.28 (m, 2H), 7.08-7.04 (m, 2H), 5.71-5.60 (m, 1H), 5.01 (dd, J =10.0,

1.2 Hz, 1H), 4.97 (dd, J = 17.2, 1.2 Hz, 1H), 2.52-2.49 (m, 2H), 2.36-2.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 162.7 (J = 248.1 Hz), 136.0, 133.4 (J = 3.5Hz), 130.7 (J = 8.3 Hz), 130.5, 127.0,

116.1, 115.7 (J =21.7 Hz), 37.5, 32.8 ppm; v_{max} (KBr)/cm⁻¹ 3079, 2926, 1640, 1595, 730 ; MS (EI) m/z 133, 168, 170, 209, 211, 249, 251, 288; HRMS(EI) calcd for C₁₂H₁₁FClBr 287.9717, found 287.9711.

(Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-chlorobenzene (3d) Yield: 86% (130.7 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.36-7.34 (m, 2H), 7.27-7.26 (m, 2H), 5.71-5.60 (m, 1H), 5.03 (dd, J =9.6,

0.8 Hz, 1H), 4.98 (dd, J = 16.4, 0.8 Hz, 1H), 2.53-2.49 (m, 2H), 2.36-2.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 135.9, 135.8, 134.9, 130.3, 130.1, 128.8, 127.3, 116.2, 37.5, 32.9 ppm; v_{max} (KBr)/cm⁻¹ 3081, 2924, 1640, 1489, 745 ; MS (EI) m/z 114, 149, 151, 184, 186, 189, 225, 229, 263, 265, 267, 304; HRMS(EI) calcd for C₁₂H₁₁Cl₂Br 303.9421, found 303.9415.

(Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-chlorobenzene (3e)
Yield: 81% (123.1 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.44-7.42
(m, 1H), 7.33-7.23 (m, 3H), 5.68-5.58 (m, 1H), 4.97 (dd, J =10.2, 0.8 Hz, 1H),

4.94 (dd, J = 16.4, 0.8 Hz, 1H), 2.44-2.34 (m, 2H), 2.32-2.25 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.2, 136.1, 133.2, 130.7, 130.5, 130.1, 128.5, 128.1, 127.1, 116.0, 37.5, 32.5 ppm; v_{max} (KBr)/cm⁻¹ 3080, 2929, 1640, 1480, 740 ; MS (EI) m/z 63, 75, 87, 99, 114, 149, 151, 183, 185, 189, 225, 229, 265, 267, 304; HRMS(EI) calcd for C₁₂H₁₁Cl₂Br 303.9421, found 303.9418.

(Z)-1-bromo-4-(2-bromo-1-chlorohexa-1,5-dien-1-yl)benzene (3f)

Yield: 89% (154.8 mg)as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.52 (m, 2H), 7.20-7.15 (m, 2H), 5.70-5.60 (m, 1H), 5.01 (dd, J = 10.0,

1.2 Hz, 1H), 4.98 (dd, J = 17.2, 1.2 Hz, 1H), 2.53-2.49 (m, 2H), 2.36-2.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 136.3, 135.9, 131.8, 130.3, 128.2, 127.3, 123.2, 116.2, 37.5, 32.9 ppm;

*v*_{max}(KBr)/cm⁻¹ 3080, 2921, 1643, 1480, 735 ; MS (EI) m/z 114, 149, 151, 190, 228, 230, 232, 271, 309, 348; HRMS(EI) calcd for C₁₂H₁₁ClBr₂ 347.8916, found 347.8913.

(Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-ethoxybenzene (3g) Yield: 77% (120.9 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.25-7.22 (m, 2H), 6.88-6.85 (m, 2H), 5.72-5.62 (m, 1H), 5.00 (dd, J = 10.4,

1.6 Hz, 1H), 4.97 (dd, J = 16.8, 1.6 Hz, 1H), 4.04 (q, J = 7.2 Hz, 2H), 2.55-2.51 (m, 2H), 2.36-2.31 (m, 2H), 1.42 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.3, 136.3, 131.6, 130.0, 129.5, 126.1, 115.8, 114.4, 63.6, 37.5, 32.9, 14.8 ppm; v_{max} (KBr)/cm⁻¹ 3079, 2921, 1640, 1475, 752 ; MS (EI) m/z 89, 102, 159, 166, 168, 246, 248, 273, 275, 314; HRMS(EI) calcd for C₁₄H₁₆OClBr

(Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-nitrobenzene (3h)
Yield: 72% (113.4 mg)as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ
8.26-8.23 (m, 2H), 7.56-7.51 (m, 2H), 5.70-5.60 (m, 1H), 5.04 (dd, J =10.0,

1.2 Hz, 1H), 5.00 (dd, J = 16.8, 1.2 Hz, 1H), 2.55-2.51 (m, 2H), 2.39-2.34 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 147.8, 143.6, 135.6, 129.9, 128.9, 128.8, 123.8, 116.6, 37.5, 32.8 ppm; v_{max} (KBr)/cm⁻¹ 3081, 2923, 1640, 1481, 743 ; MS (EI) m/z 114, 130, 149, 151, 178, 200, 228, 230, 236, 257, 259, 276, 300, 315; HRMS(EI) calcd for C₁₂H₁₁ClBrNO₂ 314.9662, found 314.9656.

(Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-2,4-dimethylbenzene (3i)
Yield: 86% (128.1 mg) as a yellow oil;¹H NMR (400 MHz, CDCl₃) δ
7.05-7.03 (m, 2H), 6.99-6.98 (m, 1H), 5.66-5.56 (m, 1H), 4.98 (dd, J =10.0,

1.2 Hz, 1H), 4.94 (dd, J = 17.2, 1.2 Hz, 1H), 2.39-2.34 (m, 2H), 2.32 (s, 3H), 2.30-2.27 (m, 2H), 2.26 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 136.4, 136.1, 133.9, 131.3, 130.9, 128.9, 126.8, 126.6, 115.9, 37.3, 32.6, 21.2, 19.3 ppm; v_{max} (KBr)/cm⁻¹ 3080, 2924, 1645, 1458, 745 ; MS (EI) m/z 115, 128, 143, 178, 180, 219, 257, 259, 298; HRMS(EI) calcd for C₁₄H₁₆ClBr 298.0124, found 298.0119.

314.0073, found 314.0066.

(Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-(4-ethylcyclohexyl)b enzene (3j)

Yield: 66% (125.4 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.24-7.18 (m, 4H), 5.73-5.63 (m, 1H), 5.00 (dd, J = 10.0, 1.2 Hz, 1H), 4.97 (dd, J = 16.8, 1.6 Hz, 1H), 2.56-2.50 (m, 2H), 2.37-2.32 (m, 2H), 1.91-1.88 (m, 4H), 1.49-1.39 (m, 2H), 1.31-1.18 (m, 4H), 1.09-1.00 (m, 2H), 0.909 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.8, 136.3, 134.7, 131.7, 128.6, 126.9, 126.3, 115.9, 44.4, 39.0, 37.5, 34.2, 33.1, 33.0, 29.9, 11.5 ppm; v_{max} (KBr)/cm⁻¹ 3080, 2922, 1640, 1500, 751; MS (EI) m/z 69, 111, 115, 128, 141, 163, 192, 225, 271, 303, 380; HRMS(EI) calcd for C₂₀H₂₆ClBr 380.0906, found 380.0900.

(Z)-(1,2-dichlorohexa-1,5-dien-1-yl)benzene (3k)

Yield: 71% (80.2 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.31 (m, 5H), 5.72-5.62 (m, 1H), 5.00 (dd, J =10.4, 1.2 Hz, 1H), 4.97 (dd, J =16.8, 1.2 Hz, 1H), 2.47-2.44 (m, 2H), 2.36-2.31 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.2, 136.3, 133.3, 129.9, 128.9, 128.6, 128.5, 115.9, 35.5, 31.9 ppm; v_{max} (KBr)/cm⁻¹ 3078, 2982, 1635, 1490, 718 ; MS (EI) m/z 115, 149, 151, 155, 163, 191, 193, 226; HRMS(EI) calcd for C₁₂H₁₂Cl₂ 226.0316, found 226.0310.

> (Z)-1-(1,2-dichlorohexa-1,5-dien-1-yl)-4-ethylbenzene (3l) Yield: 78% (99.1 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.25-7.18 (m, 4H), 5.74-5.64 (m, 1H), 5.01 (dd, J =10.4, 1.2 Hz, 1H), 4.97

(dd, J = 16.4, 1.2 Hz, 1H), 2.66 (q, J = 7.6 Hz, 2H), 2.48-2.45 (m, 2H), 2.37-2.32 (m, 2H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.2, 136.4, 134.5, 132.9, 128.9, 127.9, 127.4, 115.9, 35.5, 31.9, 28.6, 15.3 ppm; v_{max} (KBr)/cm⁻¹ 3079, 2960, 1600, 1456, 760 ; MS (EI) m/z 115, 128, 149, 151, 185, 187, 213, 215, 225, 227, 254; HRMS(EI) calcd for C₁₄H₁₆Cl₂ 254.0629, found 254.0622.

Yield: 74% (127.2 mg) as a yellow solid;¹H NMR (400 MHz,

CDCl₃) δ 7.59-7.57 (m, 2H), 7.51 (d, *J* =7.2 Hz, 2H), 7.38 (d, *J* =8.4 Hz, 2H), 7.26 (d, *J* =8.4 Hz, 2H), 5.75-5.65 (m, 1H), 5.02 (dd, *J* =10.4, 1.2 Hz, 1H), 4.98 (dd, *J* =16.8, 1.2 Hz, 1H), 2.63 (t, *J* =7.6 Hz, 2H), 2.53-2.50 (m, 2H), 2.40-2.34 (m, 2H), 1.73-1.64 (m, 2H), 0.97 (t, *J* =7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 142.5, 141.8, 137.5, 136.3, 135.7, 133.4, 129.3, 129.0, 128.6, 127.0, 126.9, 116.0, 37.7, 35.6, 32.0, 24.5, 13.9 ppm; v_{max} (KBr)/cm⁻¹ 3081, 2927, 1640, 1504, 753; MS (EI) m/z 96, 142, 152, 190, 207, 225, 238, 261, 263, 268, 303, 305, 344; HRMS(EI) calcd for C₂₁H₂₂Cl₂ 344.1099, found 344.1093.

(Z)-6,7-dichloro-5-(chloromethyl)hepta-1,5-diene (3n)

Yield: 78% (82.7 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 5.85-5.75 (m, 1H), 5.09 (dd, J =3.2, 1.2 Hz, 1H), 5.04 (dd, J =10.2, 2.8 Hz, 1H), 4.30 (s, 2H), 4.27 (s, 2H), 2.48-2.45 (m, 2H), 2.31-2.25 (m, 2H),; ¹³C NMR (100 MHz, CDCl₃) δ 137.1, 136.4, 130.1, 116.3, 44.9, 43.8, 32.3, 30.5 ppm; v_{max}(KBr)/cm⁻¹ 3081, 2924, 1520, 1272, 733 ; MS (EI) m/z 71, 81, 95, 97, 123, 130, 158, 160, 212; HRMS(EI) calcd for C₈H₁₁Cl₃ 211.9926, found 211.9919.

(Z)-ethyl 2-(1-chloroethylidene)hex-5-enoate (30)

Yield: 89% (89.9 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 5.85-5.75 (m, 1H), 5.05 (dd, J = 8.8, 1.2 Hz, 1H), 5.00 (dd, J = 15.6, 1.2 Hz, 1H), 4.26 (q, J =7.2 Hz, 2H), 2.42 (t, J =7.2 Hz, 2H), 2.22-2.18 (m, 2H), 2.17 (s, 3H), 1.33 (t, J =7.2 Hz, 3H); 13 C NMR (100 MHz, CDCl₃) δ 167.9, 136.8, 131.7, 130.5, 115.7, 61.0, 32.3, 30.5, 22.8, 14.1 ppm; v_{max}(KBr)/cm⁻¹ 2923, 2857, 1630, 1369, 714 ; MS (EI) m/z 55, 77, 79, 91, 97, 121, 138, 157, 166, 202; HRMS(ESI) calcd for C₁₀H₁₅ClO₂ 202.0761, found 202.0753.

(Z)-methyl 2-(but-3-en-1-yl)-3-chlorooct-2-enoate (3p)

Yield: 85% (103.7 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 5.77-5.67 (m, 1H), 4.98 (dd, J =10.0, 1.2 Hz, 1H), 4.93 (dd, J =16.4, 1.2 Hz,

1H), 3.72 (3,3H), 2.36-2.31 (m, 4H), 2.12-2.07 (m, 2H), 1.57-1.49 (m, 2H), 1.26-1.18 (m, 4H), 0.84 (t, J = 6.4 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 136.8, 136.7, 130.3, 115.7, 51.9, 35.3, 32.6, 31.0, 30.3, 27.1, 22.4, 13.9 ppm; v_{max}(KBr)/cm⁻¹ 3080, 2930, 1696, 1640, 750 ; MS (EI) m/z 55, 79, 91, 107, 133,179, 244; HRMS(EI) calcd for C₁₃H₂₁ClO₂ 244.1230, found 244.1227.

(Z)-ethyl 2-(chloro(phenyl)methylene)hex-5-enoate (3q)

Yield: 83% (109.6 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.41-7.35 (m, 5H), 5.74-5.64 (m, 1H), 4.98 (dd, J = 8.4, 0.8 Hz, 1H), 4.95

(dd, J=10.8, 0.8 Hz, 1H), 4.35 (q, J=7.2 Hz, 2H), 2.40-2.36 (m, 2H), 2.19-2.14 (m, 2H), 1.38 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 137.2, 136.7, 132.8, 131.9, 129.0, 128.5, 128.4, 115.7, 61.3, 32.3, 31.3, 14.2 ppm; v_{max}(KBr)/cm⁻¹ 3074, 2980, 2930, 1725, 1634, 1480, 1443, 716; MS (EI) m/z 115, 128, 143, 163, 178, 180, 219, 264 ; HRMS(EI) calcd for C₁₅H₁₇ClO₂ 264.0917, found 264.0914.

(Z)-3-(chloro(phenyl)methylene)hept-6-en-2-one (3r)

Yield: 72% (84.3 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.43-7.35 (m, 5H), 5.71-5.61 (m, 1H), 4.98 (dd, J = 8.8, 0.8 Hz, 1H), 4.96 (dd, J = 10.4, 0.8 Hz, 1H), 2.52 (s, 3H), 2.38-2.35 (m, 2H), 2.15-2.10 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 204.2, 140.5, 137.2, 136.7, 129.1, 128.6, 128.5, 115.9, 32.3, 31.4, 30.8 ppm; v_{max}(KBr)/cm⁻¹ 3078, 2980, 1725, 1634, 1600, 1480, 1442, 736; MS (EI) m/z 109, 115, 129, 153, 155, 157, 183, 193, 199, 205, 234 ; HRMS(EI) calcd for C₁₄H₁₅ClO 234.0811, found 234.0805.

(E)-(1-chloro-2-ethylhexa-1,5-dien-1-yl)benzene (3s)

Yield: 81% (89.1 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, J = 7.2 Hz, 2H), 7.27 (d, J = 7.2 Hz, 1H), 7.17 (d, J = 7.2 Hz, 2H), 5.80-5.70 (m, 1H), 4.99 (dd, J =10.8, 1.2 Hz, 1H), 4.95 (dd, J =16.0, 1.2 Hz, 1H), 2.57-2.49 (m, 4H), 2.04 (q, J =7.6 Hz, 2H), 1.21 (t, J =7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 141.4, 137.6, 135.9, 132.9, 128.6, 128.0, 126.8, 115.2, 34.2, 32.2, 29.0, 13.0 ppm; v_{max}(KBr)/cm⁻¹ 3079, 2966, 1640, 1454, 750 ; MS (EI) m/z 51, 77, 91, 103, 128, 143, 179, 185, 207, 220; HRMS(EI) calcd for C₁₄H₁₇Cl 220.1019, found 220.1017.

(Z)-(1,2-dibromohexa-1,5-dien-1-yl)benzene (4a)

Yield: 84% (131.8 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.38-7.28 (m, 5H), 5.69-5.59 (m, 1H), 4.99 (dd, J =10.2, 1.2 Hz, 1H), 4.96 (dd, J = 17.2,

1.2 Hz, 1H), 2.50-2.46 (m, 2H), 2.35-2.30 (m, 2H); 13 C NMR (100 MHz, CDCl₃) δ 139.4, 136.1, 129.8, 128.8, 128.7, 128.5, 123.0, 116.0, 38.0, 33.0 ppm; v_{max}(KBr)/cm⁻¹ 3077, 2983, 1635, 1493, 736 ; MS (EI) m/z 91, 115, 155, 195, 197, 235, 275, 314; HRMS(EI) calcd for C₁₂H₁₂Br₂ 313.9306, found 313.9301.

(Z)-1-(1,2-dibromohexa-1,5-dien-1-yl)-3-methylbenzene (4b)

Yield: 81% (132.8 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.24

(d, J = 4.8 Hz, 2H), 7.13-7.07 (m, 3H), 5.71-5.61 (m, 1H), 5.00 (dd, J = 10.4,

1.2 Hz, 1H), 4.96 (dd, J = 17.2, 1.2 Hz, 1H), 2.54-2.46 (m, 2H), 2.38-2.28 (m, 5H); ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 138.3, 136.2, 129.5, 129.2, 128.4, 125.7, 123.2, 115.9, 38.0, 33.0, 21.3 ppm; v_{max} (KBr)/cm⁻¹ 3079, 2929, 1640, 1505, 768 ; MS (EI) m/z 115, 129, 141, 154, 169, 250, 252, 287, 289, 328; HRMS(EI) calcd for C₁₃H₁₄Br₂ 327.9462, found 327.9456.

(Z)-1-(1,2-dibromohexa-1,5-dien-1-yl)-4-ethylbenzene (4c)

Yield: 85% (148.3 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.22-7.16 (m, 4H), 5.71-5.61 (m, 1H), 5.00 (dd, J = 10.4, 1.2 Hz, 1H), 4.96 (dd, J = 16.4, 1.2 Hz, 1H), 2.65 (q, J = 7.6 Hz, 2H), 2.51-2.48 (m, 2H), 2.36-2.30 (m, 2H), 1.25 (t, J = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 145.0, 136.7, 136.2, 129.5, 128.6, 128.0, 123.3, 115.9, 38.0, 33.0, 28.6, 15.2 ppm; v_{max} (KBr)/cm⁻¹ 3078, 2969, 1611, 1456, 762 ; MS (EI) m/z 115, 128, 143, 155, 169, 195, 223, 224, 305, 342; HRMS(EI) calcd for C₁₄H₁₆Br₂ 341.9619, found 341.9615.

(Z)-1-(1,2-dibromohexa-1,5-dien-1-yl)-4-(4-ethylcyclohexyl)benzene (4d)

Yield: 71% (150.5 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.22-7.16 (m, 4H),

5.71-5.61 (m, 1H), 5.02 (dd, J = 10.4, 1.2 Hz, 1H), 4.96 (dd, J = 17.2, 1.6 Hz, 1H), 2.56-2.43 (m, 2H), 2.36-2.30 (m, 2H), 1.90-1.88 (m, 4H), 1.49-1.40 (m, 2H), 1.30-1.20 (m, 4H), 1.09-0.99 (m, 2H), 0.91 (t, J = 7.2 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 148.6, 136.7, 136.3, 129.4, 128.6, 126.9, 123.4, 115.9, 44.4, 39.1, 38.0, 34.1, 33.1, 33.0, 30.0, 11.5 ppm; v_{max} (KBr)/cm⁻¹ 3081, 2979, 1644, 1500, 746; MS (EI) m/z 111, 127, 153, 169, 195, 242, 265, 304, 373, 424; HRMS(EI) calcd for C₂₀H₂₆Br₂ 424.0401, found 424.0395.

(Z)-1-bromo-4-(1,2-dibromohexa-1,5-dien-1-yl)benzene (4e) Yield: 89% (174.4 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ

7.52-7.49 (m, 2H), 7.20-7.15 (m, 2H), 5.69-5.59 (m, 1H), 5.01 (dd, J =10.6, 1.2 Hz, 1H), 4.98 (dd, J = 16.8, 1.2 Hz, 1H), 2.53-2.45 (m, 2H), 2.35-2.30 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 135.9, 131.8, 130.4, 130.3, 123.0, 121.6, 116.2, 37.9, 32.9 ppm; $v_{\rm max}$ (KBr)/cm⁻¹ 3074, 2981, 1636, 1490, 1435, 711 ; MS (EI) m/z 88, 114, 115, 154, 193, 235, 274, 315, 352, 392; HRMS(EI) calcd for C₁₂H₁₁Br₃ 391.8411, found 391.8403.

(Z)-1-bromo-4-(1-bromo-2-chlorohexa-1,5-dien-1-yl)benzene (4f) Yield: 73% (127.1 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.50

(d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.5 Hz, 2H), 5.70-5.60 (m, 1H), 5.01 (dd, J

=10.6, 1.2 Hz, 1H), 4.98 (dd, J =17.2, 1.2 Hz, 1H), 2.43-2.39 (m, 2H), 2.35-2.30 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 136.7, 136.0, 131.8, 130.7, 123.0, 118.4, 116.2, 35.8, 31.9 ppm; v_{max} (KBr)/cm⁻¹ 3075, 2983, 1635, 1495, 713 ; MS (EI) m/z 99, 114, 149, 152, 155, 190, 192, 230, 232, 269, 271, 307, 309, 348; HRMS(EI) calcd for C₁₂H₁₁ClBr₂ 347.8916, found 347.8914.

 $\overset{\text{Br}}{\longleftarrow}$ (Z)-(2-bromo-1-chloro-6-methylhepta-1,5-dien-1-yl)benzene (3v) Yield: 81% (120.7 mg) as a yellow oil; ¹H NMR (400 MHz, CDCl₃) δ 7.39-7.35 (m, 3H), 7.32-7.30 (m, 2H), 4.98-4.91 (m, 1H), 2.46-2.41 (m, 2H), 2.28-2.23 (m, 2H), 1.65 (s, 3H), 1.54 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 137.6, 133.4, 131.1, 128.8, 128.7, 128.5, 127.2, 121.9, 38.2, 27.4, 25.7, 17.6 ppm; v_{max} (KBr)/cm⁻¹ 3029, 2926, 1635, 1442, 710; MS (EI) m/z 69, 115, 150, 152, 183, 220, 223, 231, 263, 298; HRMS(EI) calcd for C₁₄H₁₆ClBr 298.0124, found 298.0122.

V. ¹H and ¹³C NMR spectra of compounds 3 and 4

¹H NMR and ¹³C NMR of (Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-fluorobenzene (3c)

¹H NMR and ¹³C NMR of (Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-chlorobenzene (3e)

¹H NMR and ¹³C NMR of (Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-ethoxybenzene (3g)

¹H NMR and ¹³C NMR of (Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-nitrobenzene (3h)

¹H NMR and ¹³C NMR of (Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-2,4-dimethylbenzene

(Z)-1-(2-bromo-1-chlorohexa-1,5-dien-1-yl)-4-(4-ethylcyclohexyl)benzene (3j)

¹H NMR and ¹³C NMR of (Z)-(1,2-dichlorohexa-1,5-dien-1-yl)benzene (3k)

¹H NMR and ¹³C NMR of (Z)-1-(1,2-dichlorohexa-1,5-dien-1-yl)-4-ethylbenzene (3l)

¹H NMR and ¹³C NMR of (Z)-4-(1,2-dichlorohexa-1,5-dien-1-yl)-4'-propyl-1,1'-biphenyl (3m)

¹H NMR and ¹³C NMR of (Z)-6,7-dichloro-5-(chloromethyl)hepta-1,5-diene (3n)

¹H NMR and ¹³C NMR of (Z)-ethyl 2-(1-chloroethylidene)hex-5-enoate (30)

¹H NMR and ¹³C NMR of (Z)-methyl 2-(but-3-en-1-yl)-3-chlorooct-2-enoate (3p)

¹H NMR and ¹³C NMR of (Z)-ethyl 2-(chloro(phenyl)methylene)hex-5-enoate (3q)

$^1\!H$ NMR and $^{13}\!C$ NMR of (Z)-3-(chloro(phenyl)methylene)hept-6-en-2-one (3r)

¹H NMR and ¹³C NMR of (E)-(1-chloro-2-ethylhexa-1,5-dien-1-yl)benzene (3s)

¹H NMR and ¹³C NMR of (Z)-(1,2-dibromohexa-1,5-dien-1-yl)benzene (4a)

¹H NMR and ¹³C NMR of (Z)-1-(1,2-dibromohexa-1,5-dien-1-yl)-4-(4-ethylcyclohexyl)benzene (4d)

¹H NMR and ¹³C NMR of (Z)-1-bromo-4-(1,2-dibromohexa-1,5-dien-1-yl)benzene (4e)

¹H NMR and ¹³C NMR of (Z)-1-bromo-4-(1-bromo-2-chlorohexa-1,5-dien-1-yl)benzene (4f)

