Supplementary Information

Efficient synthesis of graphene-based powder *via* in-situ spray pyrolysis and its application in Lithium ion batteries

Juan Yang, Qunchao Liao, Xiangyang Zhou*, Xiaojian Liu, Jingjing Tang

School of Metallurgy and Environment, Central South University, Changsha, Hunan, P. R. China. Fax: +86-731-88710171; Tel: +86-731-88836329; E-mail: hncsyjy308@163.com

Fig.S1 Photograph of (a) a suspension of as-prepared GO and (b) reduced graphene precipitated in water, (c,d) SEM images of rGO-C powder.

Fig.S2 FESEM images of rGO-P.

Fig.S3 SEM images of PrGO-500 obtained from spray precursor solutions with different GO concentrations: (a,b) 1.5g/L, (c,d) 0.6g/L.

Fig.S4 Randles equivalence circuit used to fit EIS

Samples –	Estimated wt%		- C/O ratio
	C 1s	O 1s	C/O Tatio
PrGO-200	68.72	31.28	2.20
PrGO-500	82.91	17.09	4.85
PrGO-800	88.88	11.12	7.99
rGO-P	97.40	2.60	37.46

Table S1 Chemical contents on samples via XPS

Table S2 Fitting results of the equivalent circuit

Samples	Cycle number	R _b	R _s	R _{ct}
rGO-C	1 st	3.5	70.4	57.7
rGO-C	50 th	4.1	11.1	45.5
rGO-P	1 st	4.2	36.4	41.5
rGO-P	50 th	4.0	13.4	17.4