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Supplementary Information

I. THE PARAMONOV-YALIRAKI POTENTIAL

We used the Paramonov-Yaliraki (PY) potential to model the interactions between the

ellipsoidal sites in different building blocks [1]. Each PY site is represented in terms of two

shape matrices, one repulsive and one attractive, which modulate the respective interactions

between two such sites. The pairwise energy of PY sites is Lennard-Jones-like: the repulsive

contribution depends on the distance of closest approach between the repulsive ellipsoids of

the two sites, and the attractive contribution similarly depends on the distance of closest

approach between the attractive ellipsoids. The pairwise energy for two sites is
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where ε0 is an energy scale, σ0 is the interaction range, and dR is an approximation of the

distance of closest approach between the relevant ellipsoids. Specifically, dR is the minimum

contact distance between the two ellipsoids along a vector parallel to the intercenter sepa-

ration. It can be computed using dR = r(1−F−1/2), where r is the intercenter distance and

F is the orientation- and distance-dependent elliptic contact function between the relevant

ellipsoids [2, 3]. When the two ellipsoids overlap, F < 1. When they do not overlap, F > 1.

At F = 1, the two ellipsoids are externally tangent. In this study, we employ a system of

reduced units by setting ε0 = σ0 = 1.

The individual PY sites are parameterized by the shapes of the repulsive and attractive

ellipsoids, which are described by the three repulsive semiaxes, a1i, and the three attractive

semiaxes, a2i. The parameterization used in this study is depicted in Fig. 1. The repulsive

and attractive ellipsoids are ellipsoids of revolution, and there are two free parameters: the

polar semiaxis, a13, which is common to both the repulsive and attractive ellipsoids, and the

attractive equatorial semiaxis, a21. Both a13 and a21 were systematically varied to elucidate

design principles for the building blocks described below. A visualization of the potential

associated with some of the parameterizations used in this study is shown in Fig. 2.
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FIG. 1. Cross-section of a Paramonov-Yaliraki site as parameterized in this study, showing the

repulsive ellipsoid (purple), the attractive ellipsoid (green), the repulsive equatorial semiaxis (0.5),

the attractive equatorial semiaxis, a21, and the polar semiaxis, a13, common to both ellipsoids. In

these parameterizations, the two ellipsoids have a common equatorial plane and the same north

and south poles.

II. SIMULATION METHODS

Translational perturbations of each building block were uniformly distributed in a sphere

with a radius of the same order as the size of the building block (about two reduced units)

and the orientational perturbations were uniformly distributed over an interval of approx-

imately one radian. Perturbations that produced overlap were discarded. If three sets of

randomly-selected starting coordinates all produced the same lowest minimum, we accepted

this structure as the putative global minimum. Otherwise we increased the number of basin-

hopping steps until this criterion was met.

In studies of the structures formed by single PY sites, only a few hundred basin-hopping

steps were required to reach consistency between runs starting from distinct configurations

[4]. However, for the bowtie building blocks, tens of thousands of steps were required to

reach the same kind of consistency. The increase in landscape complexity is probably due

to the differences in the interaction range parameters, σ0, used in the two studies. The

study of single-site PY building blocks used σ0 = 1, 18, and 30, while in this study we used

only σ0 = 1. Decreasing the interaction length scales probably makes the energy landscape

rougher [5–7], which makes it more difficult to locate the global minima.
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FIG. 2. Lines of equipotential for the PY potential for the featured parameterizations. This figure

shows a 2D slice of the potential energy landscape for two PY sites. The orientations of the two

sites are fixed as identical so that the potential energy depends only on the relative angle and

separation between the two sites. In each subfigure, the dashed drawing at the center shows the

ellipsoids that parameterize the sites. High energies are red; low energies are blue. In general,

the sites are “sticky” at the north and south poles but repulsive along the equator. a) Sites with

intermediate anisotropy (a13 = 0.15, a21 = 0.28). b) Sites with nearly isotropic repulsive ellipsoids

(a13 = 0.41, a21 = 0.1). c) Highly anisotropic sites (a13 = 0.1, a21 = 0.23).
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FIG. 3. Part of the disconnectivity graph for 12 bowtie building blocks (a13 = 0.15, a21 = 0.28,

φ = 23◦), showing the organization of the landscape for the minima at the bottom of the main

funnel. Energies are measured in ε0. In this example, the main funnel consists of minima that

have two helical strands. In some minima, like minimum a, the two strands are joined. In others,

like minimum b, ‘caps’ sit on top of or below the two strands. The bottom of the main funnel,

minimum c, has two strands of equal length. The global minimum d, which is separated from the

rest of the minima by a high barrier, is a single helix for this parameterization.

III. RESULTS

A. A parameterization leading to a frustrated landscape

Not all parameterizations a13, a21, and φ produce self-assembling landscapes. An example

of a frustrated landscape is shown in Fig. 3.
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FIG. 4. Regions of the parameter space of a13 and a21 for which the global minima of clusters

composed of bowtie building blocks with φ = 0◦ consist of either stacks or more isotropic clusters

of bowties. Two global minima for N = 10 and two parameterizations (black dots) are shown: one

stack (a13 = 0.2, a21 = 0.3) and one cluster (a13 = 0.2, a21 = 0.4).

B. Regions of the parameter space that produce stacks

Fig. 4 shows the parts of this parameter space in which the global minimum energy

configuration consists of stacks when the parameter φ is fixed at 0◦.

C. Rotation angle depends on building block anisotropy

The rotation angle Ω that minimizes the potential energy of a helix of building blocks

depends on the shape parameters a13 and a21 and on the dihedral angle φ. Fig. 5 shows this

dependence over most of the parameter space we explored for φ = 30◦ and 60◦. All relevant

strand-like structures assembled from φ = 0◦ building blocks have Ω = 0◦.

The angles Ω are nearly 90◦ for parameterizations near a13 = a21 = 90◦ (upper-right

in Fig. 5). Paramonov-Yaliraki sites with aij = 0.5 for i, j ∈ {1, 2, 3} have anisotropic

interactions similar to Lennard-Jones particles. Pairs of Lennard-Jones particles joined
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FIG. 5. The rotation angle Ω that minimizes a helix’s potential energy is a function of the shape

parameters. Each square is colored according to the Ω that minimized the potential energy of a

helix with N = 10 building blocks with the corresponding a13, a21, and φ. Approximate locations

of the three building block families I, II, and III are shown with open circles.

in this configuration have stable configuration with building blocks stacked at 90◦ to one

another. The optimal helix configurations for building blocks with a13 and a21 near 0.5, then,

approaches this perpendicularly-stacked configuration, and their optimal Ω values approach

90◦.

Left-handed helices (blue in Fig. 5 are optimal only for a small part of the parameter space.

This region has very small a13, corresponding to very flat, disc-like sites, and intermediate

a21, corresponding to attractive ellipsoids that are neither perfectly rod-like nor extending

to the edges of the repulsive ellipsoid. This delicate balance of anisotropies in the repulsive

and attractive ellipsoids in each site is necessary for the reversed handedness of the helices.

D. Changes in morphology of the global minimum can be predicted

Because the global minima are generally helical in the region of parameter space we con-

sidered, it is useful to define a reduced potential energy landscape U(Ω, d) whose coordinates

are the two parameters that describe a single helix: the distance d between the centers of

adjacent bowtie building blocks and the rotation angle Ω. Because d is usually peripheral

to the investigation of chirality, the potential energy landscape can be further reduced to
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one with a single coordinate Ω by defining

Ũ(Ω) = min
d
U(Ω, d). (2)

The function Ũ is well-defined because U has only one minimum in d with Ω fixed.

The Ũ landscape is useful for identifying morphological transitions in the parameter

space. For example, Ũ for bowties with φ = 0◦ and a low value for the attractive equatorial

semiaxis a21 has one minimum at Ω = 0◦. For larger a21, a local minimum of higher energy

forms at Ω = 90◦. As a21 increases, the energy of the Ω = 90◦ minimum decreases and the

energy of the Ω = 0◦ minimum increases, and we expect the local topology to be described

by a fold catastrophe [8, 9]. At a critical value of a21, the two minima are equal in energy. At

this point in the parameter space, the Ω = 0◦ minimum is no longer the global minimum as

viewed in the reduced energy landscape with coordinates d and Ω. It is also at precisely this

value of a21 that the configuration corresponding to the minimum in Ũ is no longer a local

minimum in the complete 6N -dimensional landscape, where N is the number of building

blocks. Hence this value of a21 represents the boundary of the helix-forming part of the

parameter space for φ = 0◦ shown in Fig. 4. A similar analysis applies for φ 6= 0◦, but here

the minima in Ũ are displaced away from Ω = 0◦ due to the broken symmetry.

In general, increasing a21 out of the helix-producing region of the parameter space yields

structures that are more and more isotropic. At first, the helix breaks into a ‘ladder’ where

adjacent bowties are staggered. For higher values, the helix bends over and loses its helical

topology. For very high values of a21, the potential energy minima are clusters with no

particular directionality (Fig. 4).

The energy of the helices increases as φ increases until some maximum value of φ. This

critical value decreases from about 60◦ for larger a21 down to 0◦ as a21 reaches the boundary

where the morphology of the global minimum changes for φ = 0◦ (Fig. 4). Increasing φ

beyond this value causes the helix to collapse into a more isotropic cluster. The increased

energy and consequently decreasing stability are due to the increasing distance of closest

approach between attractive ellipsoids in the same chain.
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E. Linear relationship for chiral parameters for a13 � a21

Consider a dimer of building blocks aligned along a single axis like they are in the stacks

and helices. The distance between the in-chain attraction between corresponding attractive

ellipsoids in the two building blocks is a complicated function of their orientations. As an

approximation, consider the distance between the “South Pole” of the attractive ellipsoid in

one half of the upper building block and the “North Pole” of the attractive ellipsoid in the

corresponding half of the lower building block.

If the distance between the centers of the bowties were fixed at d, the distance between

the two poles would be{[
a21(1− cos Ω)− a13 sin

φ

2
sin Ω

]2
+

[
−a21 sin Ω + a13 sin

φ

2
(1 + cos Ω)

]2
+

[
2a13 cos

φ

2
− d
]2}1/2

, (3)

which is minimized when

Ω∗ = arctan

[
2 (a13/a21) sin(φ/2)

1− (a13/a21)
2 sin2(φ/2)

]
. (4)

Comparing to the double-angle formula for the tangent shows that

Ω∗ = 2 arctan

(
a13
a21

sin
φ

2

)
. (5)

For a13 � a21, Ω∗ ≈ 2 (a13/a21) sin (φ/2). Since 2 sin (φ/2) ≈ φ to within 5% for 0◦ <

φ < 60◦, we see that Ω∗ ≈ (a13/a21)φ. This analysis quantitatively predicts the slope of the

linear parts of the Ω(φ) curves.

Decreasing the attractive equatorial semiaxis a21 increases the range of φ over which Ω is

linear. In the limit a21 → 0, the attractive ellipsoids reduce to rods whose endpoints lie at the

poles of the two ellipsoids. The point of closest approach between the attractive ellipsoids

in a chain will be at the ends of rods. In this case, it is clear that in-chain attraction favors

minimization of the distance between the poles of the two ellipsoids.

F. Geometrical trends

The spacing between the bowties along the axis of the helix depends nearly linearly on

the polar semiaxis a13 according to d ≈ 2.3 a13 when φ is small. The value of the attractive
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equatorial semiaxis a21 has little effect on d, since the organization of the helix along its

axis is due mostly to the polar axes rather than the equatorial axes. Values of d differ

significantly from the small φ limit when cross-chain repulsion begins to influence Ω, since

then the organization along the axis is affected by the interaction of the ‘wings’ of the

bowties, whose position depends on φ. Because d is mostly insensitive to φ, the helix pitch,

which is proportional to d/Ω, scales like φ−1 for small φ.
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