A highly sensitive and selective resonance Rayleigh scattering method for bisphenol A based on the aptamer-nanogold catalysis of HAuCl₄-vitamine C particle reaction

Dongmei Yao, Guiqing Wen*, Aihui Liang, Zhiliang Jiang*

(Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection, Ministry of Education, Guangxi Normal University, Guilin 541004, China)

Absorption spectra

There is only one surface plasmon resonance (SPR) absorption peak at 518 nm for the GNs. Figure 1S indicated that Apt-GN was aggregated nonspecifically in the condition of pH 7.6 Na_2HPO_4 - NaH_2PO_4 buffer solution, which showed a weak SPR peak at 518 nm. Upon addition of BPA, Apt-GN specifically combined with BPA to form dispersed BPA-Apt-GN conjugates, the SPR absorption peak increased at 518 nm.

Figure 1S Absorption spectra of the BPA-Apt-GN system a: 2.7×10⁻⁵ mol/L Apt-GN-pH7.6 PBS;b:a-66.7 ng/mL BPA;c:a-133.3 ng/mL BPA; d:a-333.3 ng/mL BPA;e:a-666.7 ng/mL BPA

Scanning electron microscope

The reaction solution of BPA-Apt-GN system was obtained by the procedure, and centrifugation and ultrasonic

dispersion of the reaction solution were made twice to prepare sample solution. Then, a 5.0 µL of the sample solution was added to a clean silicon wafer, natural drying, the sample was placed in a scanning electron microscope, to obtain the scanning electron micrograph (Figure 2S). Figure 2Sa showed that Apt-GN particles dispersed in solution. In the absent of BPA, the Apt-GNs were aggregated and formed big aggregation in the pH 7.6 Na₂HPO₄-NaH₂PO₄ buffer solution (Figure 2Sb). When the concentration of BPA increased, Apt-GN reacted specifically with BPA to form BPA-Apt-GN conjugates that were dispersed in PBS buffer solution stably (Figure 2Sc), which led to the aggregates reduced, that is agreement with the RRS results.

 $\label{eq:Figure 2S} Figure 2S \ Scanning \ electron \ microscope \ images $a: 2.7 \times 10^{-5} \ mol/L \ Apt-GN; \ b: 5.17 \mu g/mL \ Apt-GN-pH7.6 \ PBS; \ c: \ a-1 \mu g/mL \ BPA. $a= 1 \ \mu g/mL \ BPA.$

Preparation conditions of the Apt-GN probe

Effect of NaCl concentration

The effect of NaCl concentration on the GN labeled-aptamer was examined. A 200 μ L of 47.3 μ g/mL GN was added into each 5mL marked tube, a certain amount of 2.0 mol/L NaCl was added, after 10min, the solution was diluted to 2.0mL. The RRS intensity at 380 nm (I_{380nm}) was recorded. Table 1S showed that when the NaCl concentration was more than 0.013 mol/L, the $I_{380 nm}$ increased slightly. Thus, a 0.013 mol/L NaCl concentration was chosen for use.

Table 1S Effect of NaCl concentration on the I_{380nm}

						5801111	
NaCl(µL)	0	5	10	15	20	30	40
I _{380nm}	188	617	929	808	911	834	812

Selection of labeling pH

The effect of pH on the GN labeled aptamer was examined. A 200 μ L of 47.3 μ g/mL GN was added into each 5mL marked tube and the pH adjusted to 3.0-9.0 using 0.1mol/L HCl and 0.1mol/L K₂CO₃, and 100 μ L of 0.5 μ mol/L aptamer was added, after 10min, 10 μ L of 2.0 mol/L NaCl was added. After 30min, the solution was diluted to 1.5mL. The RRS intensity at 520 nm (I_{380nm}) was recorded. Table 2S showed that when the pH was more than 5.0, the I_{380nm} decreased slightly, owing to GN being coated by aptamer. Thus the GN could not aggregate in NaCl solution. A pH 6.5 was chosen for use.

Table 2S Effect of pH on the I_{380nm}

pН	3.0	3.5	4.0	4.5	5.0	6.0	6.5	7.5	8.0	9.0
I _{380nm}	544	344	282	316	246	279	240	244	231	271

Selection of aptamer amount

A 200 μ L of 2.4×10⁻⁴ mol/L GN was added into each 5mL marked tube and the pH adjusted to 6.5. Then, different amounts of 0.5 μ mol/L aptamer were added, then ultrasound 10min, 10 μ L of 2.0 mol/L NaCl was added. After 30min, the solution was diluted to 1.5mL. The RRS intensity at 520 nm (I_{380nm}) was recorded. Table 3S showed that when aptamer amount was more than 100 μ L, the I_{520nm} decreased slightly. Thus, 100 μ L of aptamer was chosen for use.

Table 3S Effect of aptamer amount on the I_{380nm}

$Apt(\mu L)$	0	20	50	80	100	130	160	290	250	300
<i>I</i> _{380nm}	910	438	254	370	253	234	215	263	214	279

Table 4S The effect of ultrasonic and standing form on the I_{380nm}

Reaction form	I _{380 nm}	RSD(%)
Standing	1362, 1240, 1327, 1275, 1119, 1391, 1579, 1677, 1705	14.4
Utrasonic	1238, 1250, 1256, 1237, 1252, 1375, 1368, 1238, 1330	4.5