Supplementary Information

Synthesis of materials

1) Synthesis of porous silica from rice husk

The raw rice husk was purified by leaching with 10 wt% HCl aqueous solution for 8 h at 60° C. After leaching, rice husk was rinsed with de-ion water and dried at vacuum at 100° C. Then the rice husk was calcined in air at 700° C for 3 h to remove the organic component, and got white silica powder (*h*-Silica). As comparison, raw rice husk was just rinsed in the de-ion water, dried in vacuum and calcined in air to get the silica powder (*w*-Silica).

2) Conversion of porous silica to porous silicon

0.3 g *h*-Silica or *w*-Silica and 0.3 g magnesium powder (Sinopharm Chemical Reagent Co. Ltd, 200 mesh) were mixed thoroughly. The obtained mixture was put in a steel boat, and then heated to 650° C with a ramping rate of 5°C and kept for 7 h in a tube furnace flowing through 95 vol% Ar/5 vol% H₂ gas. The obtained dark brown powder was etched in 2M HCl aqueous solution for 6 h, then immersed in a 5 wt% HF solution for 5 minutes. The powder in mixture was filtered out, rinsed with de-ion water and ethanol for 4 times, respectively. It was finally vacuum-dried at 80 for 12 h to obtained porous silicon. The yields of porous SiO₂ and Si from raw rice husk are 12.4 wt% and 4.0 wt%, respectively.

Materials characterization

A Rigaku D/Max-RB diffractometer with Cu Kα radiation (40 kV, 40 mA) was used to obtain XRD patterns. Secondary electron images were obtained with a Philips XL30 FEG field emission scanning electron microscope operating at 10 keV. A JEOL JEM-2010 transmission electron microscope operating at 200 keV was used to conduct TEM analyses. Nitrogen sorption isotherms were collected at 77 K (Micrometrics ASAP 2020 analyzer) after vacuum degassing of the samples at 200°C for 3 h. Specific surface area were obtained using the Brunaur-Emmett-Teller (BET) method. The Barrett-Joyner-Halenda (BJH) method was applied to the adsorption branches of isotherms to obtain pore size distributions.

Electrochemical tests

To test the properties of synthesized porous silicon, CR2016 half- cells were assembled to perform electrochemical experiments. The components of the electrodes were 60 wt% of porous silicon as active material, 20 wt% of Super P carbon black, and 20 wt% of sodium alginate as a binder. The electrolyte consisted of a solution of 1M LiPF6 in a mixture of carbonate-containing vinylene carbonate (Novolyte Technologies, Inc., Suzhou, China). The active materials loading rate was ~1.00 mg/cm². Pure Li foils were used as counter electrodes. The cells were charged and discharged galvanostatically in a fixed voltage window from 5 mV to 1.0 V on a LAND battery test system (Wuhan Kingnuo Electronics Co., Ltd., China) at 25°C.

Figure S1. EDAX analysis of *h*-Silicon.

Figure S2. a, b, SE images of *h*-Silicon and *w*-Silicon, respectively (insets are images at higher magnification).

Figure S3. The cycling performance of another two *h*-silicon samples, showing the repeatability of our measurements.

Figure S4. SEM images of mesoporous anodes composed of *h*-silicon a) before and b) after the cycling.

Reference	BET	Anode Materials	Capacity after 50	Rate at 1C	Rate at 2C	Rate at 4C
No	$(m^2 g^{-1})$		cycles (mAh g ⁻¹)	$(mAh g^{-1})$	$(mAh g^{-1})$	$(mAh g^{-1})$
This work	150	Mesoporous Si	1370 (1.0 C)	1863	1555	1150
1	112	Hollow porous Si	<i>ca</i> .1700 (0.5 C)	ca.1400	_	<i>ca</i> .800
2	_	Macroporous Si	ca.1800 (0.1 C)	1430	590	-
2	_	Silver-coated Si	ca.2500 (0.1 C)	1610	800	-
3	-	Mesoporous Si	<i>ca</i> .1500 (2.0 C)	-	-	-
4	-	Mesoporous Si	ca.750 (0.4C)	-	-	ca.375
5	93.4	Mesoporous C/Si	594 (0.1C)	270	-	-
6	46.9	Porous silicon	240	<i>ca</i> .120	90	-

Table S1. The cycle and rate performance of mesoporous h-Silion compared with other porous Si

Note: $1C=1000 \text{ mA g}^{-1}$

- 1. D. Chen, X. Mei, G. Ji, M. Lu, J. Xie, J. Lu and J. Y. Lee, *Angewandte Chemie-International Edition*, 2012, **51**, 2409-2413.
- 2. B. Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P. A. Aken and J Maier, *Adv Mater*, 2010, 22, 2247-2250.
- 3. H. Jia, P. Gao, J. Yang, J, Wang, Y Nuli and Z. Yang, *Adv Energy Mater*, 2011, **1**, 1036-1039.
- 4. I. Hong, B. Scrosati and F. Croce, Solid State Ionics, 2013, 232, 24-28.
- 5. X. Shen, D. Mu, S. Chen, B. Xu, B. Wu and F. Wu, *Journal of alloys and compounds*, 2013, **552**, 60-64.
- 6. M. Wang, L. Fan, M. Huang, J. Li, X. Qu, *Journal of Power Sources*, 2012, 219, 29-35.