Supporting information

Carbazole Substituted 2-Aminobenzamide Compounds: Synthesis, Fluorescence ON-OFF-ON Sensing of Zn(II) and PPi Ions, Assay for Alkaline Phosphatase, and Computational Study

Qin-chao Xu,^a Xiang-feng Wang,^b Guo-wen Xing^a* and Yuan Zhang^{a,c}*

^aDepartment of Chemistry, Beijing Normal University, Beijing 100875, China

^bAnalytical and Testing Center, Beijing Normal University, Beijing, 100875, China

^cKey Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry,

Beijing Normal University, Beijing 100875, China

Contents	Pages			
Experimental Section	S1			
Figure S1a UV absorption spectra of 4-isoACBA (10 μ M) upon addition of Zn ²⁺ (0-1.2 equiv) in 10 mM				
HEPES buffer ($pH = 7.4$).				
Figure S1b UV absorption spectra of 5-isoACBA (10 µM) upon addition of Zn ²⁺ (0-1.4 equiv) in 10 mM				
HEPES buffer ($pH = 7.4$).				
Figure S2a. HRMS spectrum of 4-isoACBA-Zn(II) complex.	S7			
Figure S2b. HRMS spectrum of 5-isoACBA-Zn(II) complex.	S8			
Figure S3 Fluorescence spectra of (a) 5-isoACBA on the addition of various metal ions and (b)				
5-isoACBA-M and 5-isoACBA-M on the addition of PPi.				
Figure S4a. Job's plot for the binding between 4-isoACBA-Zn(II) and PPi.	S10			
Figure S4b. Job's plot for the binding between 5-isoACBA-Zn(II) and PPi.	S10			
Figure S5. UV-vis absorption spectra of 5-isoACBA-Zn(II) (10 µM) upon addition of PPi in 10 mM	S11			
HEPES buffer ($pH = 7.4$).				
Figure S6a. HRMS spectrum of 4-isoACBA-Zn(II)-PPi obatined in positive mode on Bruker	S12			
micrOTOF-QII mass spectrometer.				
Figure S6b. HRMS spectrum of 5-isoACBA-Zn(II)-PPi.	S13			
Figure S7 Calculated structure for 4-isoACBA and 4-isoACBA-Zn(II).	S14			
¹ H-NMR or ¹³ C-NMR spectra for 3 , 5 , 7 , 8 , 4-isoACBA and 5-isoACBA	S15-S24			

Table of Contents

Experimental Section

General. All chemicals were purchased as reagent grade and used without further purification. Buchwald–Hartwig cross-coupling reactions were performed in flame-dried glassware under argon. Toluene was distilled from calcium hydride. The reactions were monitored by analytical thin-layer chromatography (TLC) on silica gel F_{254} glass plates and visualized under UV light (254 and 365 nm) and/or by staining with ninhydrin. Flash column chromatography was performed on silica gel (200–300 mesh). ¹H NMR spectra were recorded with a Bruker Avance III 400 MHz NMR spectrometer at 20 °C. Chemical shifts (in ppm) were determined relative to tetramethylsilane ($\delta = 0$ ppm) in deuteriated solvents. Coupling constants in Hz were measured from the one-dimensional spectra. ¹³C NMR or ¹³C attached-protontest (¹³C-Apt) spectra were recorded with the 400 MHz NMR spectrometer (100 MHz) and calibrated with CDCl₃ ($\delta = 77.23$ ppm). High-resolution mass spectra were recorded with Waters LCT Premier XE or Bruker micrOTOF-QII mass spectrometer. Low-resolution mass spectra were determined by Agilent 7890A GC-5975CMS. UV-vis absorption and emission spectra were recorded with a GBC Cintra 10e UV/Vis spectrophotometer and a Varian Cary Eclipse spectro-fluorimeter, respectively, in a quartz cell with a 1 cm path length.

2-bromo-4-carbazolylbenzonitrile (3):

Carbazole (167 mg, 1.00 mmol, 1.00 equiv.) was dissolved in DMF (4 ml), and 2-bromo-4-fluorobenzonitrile (200 mg, 1.00 mmol, 1.00 equiv.) and K_2CO_3 (276 mg, 2.00 mmol, 2.00 equiv.) were added. The reaction mixture was stirred in a 60 °C oil bath until the starting material had been completely consumed as detected by TLC. The solution was then allowed to cool to room temperature, and the DMF was evaporated under vacuum to leave a yellowish oil. The crude oil was then diluted with DCM (150 mL), washed with saturated NaCl solution, and dried with MgSO₄. After removal of the solvent, the mixture was purified by column chromatography (Hexanes/EtOAc = 12/1) to give **3**

(319 mg, 0.92 mmol, 92%) as a colorless solid. Mp. 193–194 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, J = 7.8 Hz, 2 H), 7.99 (d, J = 1.9 Hz, 2 H), 7.90 (d, J = 8.3 Hz, 1 H), 7.71 (dd, J = 8.3, 2.0 Hz, 1 H), 7.44-7.49 (m, 4 H), 7.34–7.38 (m, 2 H). ¹³C-Apt (100 MHz, CDCl₃): δ 142.9, 139.6, 135.5, 130.7, 126.6, 125.4, 124.2, 121.4, 120.7, 116.9, 113.7, 109.5. MS (ESI): m/z [M]⁺ 346.1. Anal. Calcd for C₁₉H₁₁BrN₂·1/3H₂O: C, 64.60; H, 3.33; N, 7.93. Found: C, 64.94; H, 3.31; N, 7.59.

2-({2-[bis(pyridin-2-ylmethyl)amino]ethyl}amino)-4-carbazolylbenzamide (4-isoACBA):

A Schlenk flask was charged with compound 3 (108 mg, 0.31 mmol, 1.00 equiv.), BPEA 4 (76 mg, 0.31 mmol, 1.00 equiv.), sodium tert-butoxide (75 mg, 0.78 mmol, 2.50 equiv.), palladium chloride (11 mg, 0.06 mmol, 0.20 equiv.), 1,1'-bis(diphenylphosphanyl)ferrocene (DPPF; 33 mg, 0.06 mmol, 0.20 equiv.), and toluene (10 mL) under argon. The flask was immersed in an oil bath at 100 °C with stirring until the starting material had completely disappeared as judged by TLC analysis. The solution was then allowed to cool to room temperature, diluted with DCM (100 mL), filtered through Celite, and concentrated. The crude product was purified by column chromatography (CH₂Cl₂ /MeOH = 40/1) on silica gel to give 5 (48 mg, 0.094 mmol, 30%) as a dark-red viscous oil. ¹H NMR (400 MHz, $CDCl_3$): δ 2.92 (t, J = 5.84 Hz, 2 H), 3.21 (d, J = 4.60, 2 H), 3.92 (s, 4 H), 6.04 (bs, 1 H), 6.71 (d, J = 1.48 Hz, 1 H), 6.86 (dd, J = 8.24, 1.68 Hz, 1 H), 7.38-7.43 (m, 4 H), 7.28-7.31 (m, 2 H), 7.61 (d, J = 7.64 Hz, 3 H), 7.69 (td, J = 7.72, 1.60 Hz, 2 H), 8.12 (d, J = 7.76 Hz, 2 H). KOH (48 mg, 0.86 mmol, 9.15 equiv.) and compound 5 (48 mg, 0.094 mmol, 1.00 equiv.) were added to a solution of EtOH and DMSO (4/1, 1.5 mL). The reaction mixture was stirred in a 40 °C oil bath, and H₂O₂ (30%, 0.3 mL) was slowly added dropwise through a syringe over 0.5 h. Then the resulting solution was stirred for another 2.0 h until the disappearance of benzonitrile as shown by TLC. After removal of the solvent by rotary evaporation, the mixture was diluted with DCM (150 mL), washed with saturated NaCl solution, dried with MgSO₄, filtered, and concentrated. The mixture was purified by column chromatography $(CH_2Cl_2/MeOH = 20/1)$ to give 4-isoACBA (45 mg, 0.085 mmol, 90%) as a pale yellow solid. Mp. 75–77 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.43 (d, J = 4.4 Hz, 2 H), 8.14 (d, J = 7.8 Hz, 2 H), 7.74 (dd, J = 7.6, 12.4 Hz, 3 H), 7.41 (d, J = 4.1 Hz, 4 H), 7.27–7.29 (m, 4 H), 7.06 (t, J = 5.4 Hz, 2 H), 6.77 (dd, J = 8.3, 1.8 Hz, 1 H), 6.72 (s, 1 H), 3.93 (s, 4 H), 3.28 (s, 2 H), 2.95 (t, J = 5.9 Hz, 2 H), 2.90 (s, 2 H). ¹³C-Apt (100 MHz, CDCl₃): δ 171.3, 159.0, 151.2, 148.8, 142.3, 140.4, 136.6, 129.9, 126.0, 123.6, 123.2, 122.1, 120.3, 120.1, 112.6, 112.4, 109.6, 60.6, 52.6, 40.6, 29.7. HRMS (ESI-TOF): *m/z* Calcd for C₃₃H₃₁NO₆ [M+H]⁺ 527.2599, found: 527.2561.

2-bromo-5-carbazolylbenzonitrile (7):

Carbazole (167 mg, 1.00 mmol, 1.00 equiv.) was dissolved in DMF (4 ml), and 2-bromo-5-fluorobenzonitrile (300 mg, 1.50 mmol, 1.50 equiv.) and Cs₂CO₃ (648 mg, 2.00 mmol, 2.00 equiv.) were added. The reaction mixture was stirred at room temperature for 30 min and then heated in an 80 °C oil bath until the starting material had been completely consumed as detected by TLC. The solution was then allowed to cool to room temperature, and the DMF was evaporated under vacuum to leave a yellowish oil. The crude oil was then diluted with DCM (150 mL), washed with saturated NaCl solution, and dried with MgSO₄. After removal of the solvent, the mixture was purified by column chromatography (hexanes/EtOAc = 12/1) to give **7** (300 mg, 0.86 mmol, 86%) as a colorless solid. Mp. 125–127 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.14 (d, *J* = 7.7 Hz, 2 H), 7.90-7.93 (m, 2 H), 7.69-7.72 (m, 1 H), 7.42-7.46 (m, 2 H), 7.32-7.37 (m, 4 H). ¹³C-Apt (100 MHz, CDCl₃): δ 140.1, 137.8, 134.9, 132.4, 132.2, 126.5, 123.9, 123.3, 121.1, 120.7, 117.6, 116.4, 109.2. MS (ESI): *m/z* [M]⁺ 346.0. Anal. Calcd for C₁₉H₁₁BrN₂: C, 65.73; H, 3.19; N, 8.07. Found: C, 65.90; H, 3.09; N, 8.11.

2-({2-[bis(pyridin-2-ylmethyl)amino]ethyl}amino)-4-carbazolylbenzamide (5-isoACBA):

A Schlenk flask was charged with compound 7 (149 mg, 0.43 mmol, 1.05 equiv.), BPEA (99 mg, 0.41 mmol, 1.00 equiv.), sodium *tert*-butoxide (99 mg, 1.03 mmol, 2.50 equiv.), palladium chloride (15 mg, 0.08 mmol, 0.20 equiv.), 1,1'-bis(diphenylphosphanyl)ferrocene (DPPF; 46 mg, 0.08 mmol, 0.20 equiv.), and toluene (10 mL) under argon. The flask was immersed in an oil bath at 100 °C with stirring until the starting material had completely disappeared as judged by TLC analysis. The solution was then allowed to cool to room temperature, diluted with DCM (100 mL), filtered through Celite, and concentrated. The crude product was purified by column chromatography (CH₂Cl₂/MeOH = 40/1) on silica gel to give **8** (100 mg, 0.20 mmol, 49%) as a colorless solid. ¹H NMR (400 MHz, CDCl₃): δ 8.59 (d, *J* = 4.7 Hz, 2 H), 8.13 (d, *J* = 7.7 Hz, 2 H), 7.74 (td, *J* = 7.7, 1.5 Hz, 2 H), 7.65 (d, *J* = 7.8 Hz, 2 H), 7.56 (d, *J* = 2.4 Hz, 1 H), 7.47 (dd, *J* = 8.8, 2.3 Hz, 1 H), 7.40 (t, *J* = 7.5 Hz, 2 H), 7.26 (dd, *J* = 17.1, 7.5 Hz, 4 H), 7.19 (t, *J* = 5.7, 2 H), 6.73 (d, *J* = 8.9 Hz, 1 H), 6.06 (bs, 1 H), 3.95 (s, 4 H), 3.34 (s, 2 H), 2.98 (t, *J* = 5.7 Hz, 2 H).

KOH (100 mg, 1.79 mmol, 8.95 equiv.) and compound **8** (99 mg, 0.20 mmol, 1.00 equiv.) were added to a solution of EtOH and DMSO (4/1, 2.0 mL). The reaction mixture was stirred in a 40 °C oil bath, and H₂O₂ (30%, 0.5 mL) was slowly added dropwise through a syringe over 0.5 h. Then the resulting solution was stirred for another 2.0 h until the disappearance of benzonitrile as shown by TLC. After removal of the solvent by rotary evaporation, the mixture was diluted with DCM (150mL), washed with saturated NaCl solution, dried with MgSO₄, filtered, and concentrated. The mixture was purified by column chromatography (CH₂Cl₂/MeOH = 15/1) to give 5-isoACBA (88 mg, 0.17 mmol, 85%) as a pale green solid. Mp. 210–212 °C. ¹H NMR (400 MHz, CDCl₃): δ 8.52 (d, *J* = 4.3 Hz, 2 H), 8.25 (bs, 1 H), 8.13 (d, *J* = 7.6 Hz, 2 H), 7.79 (d, *J* = 7.7 Hz, 2 H), 7.69 (t, *J* = 7.4 Hz, 2 H), 7.51 (s, 1 H), 7.39 (t, *J* = 7.4 Hz, 3 H), 7.26 (t, *J* = 10.5 Hz, 4 H), 7.15 (t, *J* = 5.3 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 1H), 5.75 (bs, 2 H), 3.93 (s, 4 H), 3.38 (t, *J* = 5.7 Hz, 2 H), 2.93 (t, *J* = 5.7 Hz, 2 H). ¹³C-Apt (100 MHz, CDCl₃): δ 171.1, 149.2, 148.6, 141.6, 137.5, 132.9, 127.7, 125.9, 124.3, 124.1, 123.0, 122.8, 120.3 (2C), 119.7, 114.2, 113.1, 109.6, 59.8, 52.5, 40.1, 29.7. HRMS (ESI-TOF): *m/z* Calcd for C₃₃H₃₁NO₆ [M+H]⁺ 527.2599, found: 527.2562.

Spectroscopic Materials and Methods: Stock solutions (0.5 mM) of zinc perchlorate were prepared in HEPES buffer (10 mM HEPES, pH = 7.4). Stock solutions (1.0 mM) of 4-isoACBA and 5-isoACBA were prepared in DMSO. The 4-isoACBA-Zn(II) and 5-isoACBA-Zn(II) complex solutions were prepared by *in situ* mixing of Stock solutions (0.5 mM) of zinc perchlorate (2.0 mL) and Stock solutions (1.0 mM) of 4-isoACBA and 5-isoACBA (1.0 mL), and then diluted to 100 ml, respectively. All the fluorescence spectra of probes were also measured in HEPES buffer (10 mM HEPES, pH = 7.4, 1% (v/v) DMSO) and the excitation wavelength was 350 nm with excitation and emission slit widths of 5 nm at room temperature. The association constants of the complexes between PPi or metal ions and the probes were determined according to the literature procedures.¹⁻²

Assay for alkaline phosphatase: The fluorescence turn-off assay for ALP was carried out in 10 mM HEPES buffer of pH 7.4 at 37 °C. Generally, the solutions containing (i) 10 μ M 4-isoACBA-Zn(II) + 10 μ M Na₄P₂O₇ and (ii) 10 μ M 5-isoACBA-Zn(II) + 10 μ M Na₄P₂O₇ were prepared respectively, and the resulted mixture was incubated for 10 mins. Upon the addition of an aliquot of ALP (Sigma product number P7640, from bovine intestinal mucosa), fluorescence intensity for 4-isoACBA-Zn(II) ($\lambda_{ex} = 350 \text{ nm}$, $\lambda_{em} = 426 \text{ nm}$) and for 5-isoACBA-Zn(II) ($\lambda_{ex} = 350 \text{ nm}$, $\lambda_{em} = 464 \text{ nm}$) was recorded as a function of time with different ALP concentrations.

DFT Calculation: The ground state structures of sensors were optimized using density functional theory (DFT) with B3LYP functional and 6-31G (d) basis set. No imaginary frequencies were found in frequency analysis of all calculated structures. All calculations were performed using the Gaussian 09.³

Reference:

- (1) N. Shao, H. Wang, X. Gao, R. Yang, W. Chan, Anal. Chem., 2010, 82, 4628-4636.
- (2) K. A. Conners, Binding constants, Wiley: New York, 1987.
- (3) M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09; Revisions A.02 ed., Gaussian, Inc.: Wallingford CT, 2009.

Figure S1a UV absorption spectra of 4-isoACBA (10 μ M) upon addition of Zn²⁺ (0-1.2 equiv) in 10 mM HEPES buffer (pH = 7.4).

Figure S1b UV absorption spectra of 5-isoACBA (10 μ M) upon addition of Zn²⁺ (0-1.4 equiv) in 10 mM HEPES buffer (pH = 7.4).

			Ν	/lass Spectru	ım List F	Report	
Analysis Info)					Acquisition Date	11/28/2012 4:43:01 PM
Analysis Nam Method Sample Name	e D:\Da LHL- e P17B	ata\WXF tune_wio 3+Zn-2	\XING\P de.m	17B+Zn-2.d	Operator BDAL@DE Instrument / Ser# micrOTOF-Q II 10260		
Comment	-						
Acquisition I	Paramete	r		an track with the	0.4040.001		11 AURIL 1991
Source Type Focus Scan Begin Scan End	E: Ac 10	si ctive 00 m/z 500 m/z		Ion Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 ∨ -500 ∨ 550.0 ∨pp	Set Nebulize Set Dry Heat Set Dry Gas Set Divert Va	r 0.4 Bar er 180 °C 4.0 l/min l/ve Source
				<mark>[4-isoA</mark> 589.1689	.CBA + Zn –	H]+	
		297	.1025	479.0844			
	174						
	+	MS, 0.1-0	.4min #(7-	25)			
#	m/z	1	FWHM	Res.			
1	283.1092	967	0.0194	14564			
2	286.0851	1060	0.0192	14870			
4	296.1071	1316	0.0277	7700			
5	297.1025	3439	0.0191	15525			
6	453.1006	1081	0.0285	15892			
7	478.0944	1060	0.0373	12811			
8	479.0844	6861	0.0296	16189			
10	480.0899	5738 4665	0.0294	16307			
11	482.0876	3920	0.0318	15144			
12	483.0828	3504	0.0315	15345			
13	484.0864	2148	0.0289	16731			
14	496.1104	5866	0.0295	16838			
15	497.1115	1611	0.0337	14740			
16	498.1063	3362 1751	0.0326	15295			
18	500.1062	2355	0.0329	15211			
19	571.1575	2378	0.0319	17902			
20	573.1567	1480	0.0356	16078			
21	575.1551	1104	0.0348	16549			
22	589.1689	68013	0.0346	1/019			
23	591 1667	41244	0.0327	16250			
25	592.1680	22315	0.0341	17355			
26	593.1654	29749	0.0358	16548			
27	594.1675	11216	0.0354	16771			
28	595.1688	2793	0.0364	16363			
29	627 1451	1215	0.0391	16247			
50	921.1417	1200	0.0300	10271			

Figure S2a HRMS spectrum of 4-isoACBA-Zn(II) complex.

Mass Spectrum List Report

Analysis Info

Method Sample Name Comment	Ihl-tur P21+	ne_wide. Zn	.m		Operator E Instrument / Ser# r	3DAL@DE nicrOTOF-Q II 10260	
Acquisition P Source Type Focus Scan Begin Scan End	Parameter ES Ac 50 30	r SI stive) m/z)00 m/z		lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Positive 4000 V -500 V 800.0 Vpp	Set Nebulizer Set Dry Heater Set Dry Gas Set Divert Valv	0.4 Bar 180 °C 6.0 l/min re Source
inter x10	15. 04 4 3 2		[5 589.1654	i-isoACBA + Zn – H]¹			
	-بــــــــــــــــــــــــــــــــــــ	MS. 0.4m	 500 in #24	1000	1500	2000	2500 m/z
# 1 2 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	m/z 406.3533 436.2090 527.2522 528.2539 533.1757 549.2335 550.2349 550.2349 559.1654 590.1677 591.1643 592.1647 593.1625 594.1636 595.1677 596.1646 610.8134 612.8071 625.1411 625.1411 625.1411 628.1416 629.1368 630.1358 631.1326 635.0920 689.1186 689.1186 691.1179 693.1153 694.1202	I 245 260 1968 1128 422 1178 473 35398 14913 21250 10305 15740 4832 1244 247 489 730 1981 908 2077 501 380 2501 380 2501 666 844 472 235	FWHM 0.0271 0.0274 0.0241 0.0265 0.0241 0.0265 0.0254 0.02264 0.02264 0.02264 0.02264 0.0321 0.0321 0.0321 0.0360 0.0346 0.0353 0.0346 0.0359 0.0359 0.0324 0.0325 0.0284 0.0365 0.0284 0.0324 0.0324 0.0329 0.0324 0.0329 0.0324 0.0329 0.0324 0.0329 0.0324 0.0329 0.0324 0.0329 0.0324 0.0329 0.0329 0.0324 0.0329 0.0324 0.0329 0.0329 0.0324 0.0329 0.0324 0.0329 0.0324 0.0329 0.0324 0.0329 0.0324 0.0329 0.0324 0.0329 0.0324 0.0329 0.0324 0.0324 0.0324 0.0324 0.0324 0.0324 0.0324 0.0325 0.0284 0.0325 0.0342 0.0325 0.0324 0.0325 0.0324 0.0325 0.0324 0.0325 0.0324 0.0325 0.0324 0.0325 0.0324 0.0325 0.0324 0.0325 0.0324 0.0344 0.0324 0.0344 0.0324 0.0345 0.0344 0.0344 0.0345 0.0344 0.0345 0.0344 0.0345 0.0344 0.0345 0.0344 0.0345 0.0344 0.0345 0.0344 0.0345 0.0344 0.0345 0.0344 0.0345 0.0344 0.0345 0.03	Res. 15009 15921 16751 21941 20147 17437 21621 20572 21577 18307 18475 18502 16500 17209 16860 17053 20752 17436 18966 18918 17933 22174 17189 15052 27850 18881 23554 20171 18881 23554 20171 18881			

Figure S2b HRMS spectrum of 5-isoACBA-Zn(II) complex.

Figure S3 Fluorescence spectra of (a) 5-isoACBA on the addition of various metal ions and (b) 5-isoACBA-M and 5-isoACBA-M on the addition of PPi. *Experimental conditions*: 5-isoACBA and 4-isoACBA-M (10 μ M, 10 mM HEPES buffer, pH 7.4), 10 μ M Li⁺, K⁺, Rb⁺, Cs⁺, Ca²⁺, Mg²⁺, Ba²⁺, Sr²⁺, Cr³⁺, Mn²⁺, Fe³⁺, Ni²⁺, Pb²⁺, Sm²⁺, Co²⁺, Cu²⁺, Cd²⁺ and Zn²⁺, 5-10 μ M PPi, $\lambda_{ex} = 350$ nm.

Figure S4a. Job's plot for the binding between 4-isoACBA-Zn(II) and PPi. [4-isoACBA-Zn(II)] + [PPi] = 0.01 mM.

Figure S4b. Job's plot for the binding between 5-isoACBA-Zn(II) and PPi. [5-isoACBA-Zn(II)] + [PPi] = 0.01 mM.

Figure S5. UV-vis absorption spectra of 5-isoACBA-Zn(II) (10 μ M) upon addition of PPi in 10 mM HEPES buffer (pH = 7.4).

Figure S6a HRMS spectrum of 4-isoACBA-Zn(II)-PPi obatined in positive mode on Bruker micrOTOF-QII mass spectrometer.

Figure S6b HRMS spectrum of 5-isoACBA-Zn(II)-PPi.

Figure S7. Calculated structure for 4-isoACBA and 4-isoACBA-Zn(II).

S20

