Supporting Information

Palladium-catalyzed C–H activation of anilides at room temperature: *ortho*-arylation and acetoxylation

Fan Yang, Feijie Song, * Wei Li, Jingbo Lan and Jingsong You*

Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, and State Key Laboratory of Biotherapy, West China Medical School, Sichuan University, 29 Wangjiang Road, Chengdu 610064, PR China Fax: 86-28-85412203; E-mail: fsong@scu.edu.cn, jsyou@scu.edu.cn

Table of contents

I. General Remarks	S3
II. Optimization of the <i>ortho</i> -arylation reaction of anilides at room temperature	S3
III. General procedure for the <i>ortho</i> -arylation reaction of anilides at room temperature	S4
IV. General procedure for the <i>ortho</i> -acetoxylation reaction of anilides at room temperature	S4
V. Characterization of the described substances	S5
VI. The synthesis and characterization of bimetallic palladacycles 5a and 5b	S13
VII. The reaction of complex 5a with <i>o</i> -xylene	.S14
VIII. The acetoxylation of complex 5b	.S14
IX. Intermolecular kinetic isotope effect	S14
X. References	.S15
XI. ¹ H- ¹ H NOESY spectrum of the mixture of $3g$ and $3g'$.S16
XII. Copies of ¹ H and ¹³ C NMR spectra	.S17

I. General remarks

NMR spectra were obtained on a Bruker AV II-400 or a Varian Inova 400 spectrometer. The ¹H NMR (400 MHz) chemical shifts were measured relative to CDCl₃, TMS, acetone- d_6 , methanol- d_4 or DMSO- d_6 as the internal reference (CDCl₃: $\delta = 7.26$ ppm; TMS: $\delta = 0.00$ ppm; acetone- d_6 : $\delta = 2.05$ ppm; methanol- d_4 : $\delta = 3.31$ ppm; DMSO- d_6 : $\delta = 2.50$ ppm). The ¹³C NMR (100 MHz) chemical shifts were given using CDCl₃, acetone- d_6 , methanol- d_4 or DMSO- d_6 as the internal standard (CDCl₃: $\delta = 77.16$ ppm; acetone- d_6 : $\delta = 29.84$, 206.26 ppm; methanol- d_4 : $\delta = 49.00$ ppm; DMSO- d_6 : $\delta = 39.52$ ppm). High-resolution mass spectra (HRMS) were obtained with a Waters-Q-TOF Premier (ESI). Melting points were determined with XRC-1 instrument and are uncorrected.

All the reactions were carried out under an air atmosphere. Arenes, trifluoroacetic acid, $K_2S_2O_8$, $(NH_4)_2S_2O_8$, $Na_2S_2O_8$ and $Cu(OAc)_2$ were purchased from Chengdu Kelong Chemical Engineering Reagent (China) CO., Ltd. Pd(OAc)_2 and PdCl₂ were purchased from Shanxi Kaida Chemical Engineering (China) CO., Ltd. Anilides were prepared according to the literature procedure from anilines.¹

II. Optimization of the ortho-arylation reaction of anilides at room temperature

A Schlenk tube was charged with palladium species (0.05 mmol), oxidant (1.0 mmol, 2.0 equiv) and N-(*o*-tolyl)acetamide **1a** (0.5 mmol) under air. Additive and *o*-xylene **2c** were then added via syringes. After being stirred at room temperature for 24 h, the mixture was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10 mL of CH₂Cl₂. The filtrate was collected and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) to provide the desired product.

	Me NHAc H 1a 20	Pd catalyst Oxidant, Additive rt, 24 h	NHAc 3c	
Entry	Palladium (mol%)	Oxidant (equiv)	Additive (equiv)	Yield $(\%)^b$
1	$Pd(OAc)_2(10)$	$K_2S_2O_8(2)$	TFA (20)	86
2	$Pd(OAc)_2(10)$	$Na_{2}S_{2}O_{8}(2)$	TFA (20)	80
3	Pd(OAc) ₂ (10)	$(NH_4)_2S_2O_8(2)$	TFA (20)	95
4	$Pd(OAc)_2(10)$	Oxone (2)	TFA (20)	trace

Table S1 Optimization of the palladium-catalyzed direct ortho-arylation of N-(o-tolyl)acetamide 1a^a

5	$Pd(OAc)_2(10)$	$Ag_2CO_3(2)$	TFA (20)	trace ^c
6	$Pd(OAc)_2(10)$	$Cu(OAc)_2(2)$	TFA (20)	16
7	$PdCl_2(10)$	$(NH_4)_2S_2O_8(2)$	TFA (20)	trace ^c
8	$Pd(TFA)_2(10)$	$(NH_4)_2S_2O_8(2)$	TFA (20)	88
9	$Pd(OAc)_2(10)$	$(NH_4)_2S_2O_8(2)$	HOAc (20)	16
10	$Pd(OAc)_2(10)$	$(NH_4)_2S_2O_8(2)$	PivOH (20)	trace
11	$Pd(OAc)_2(10)$	$(NH_4)_2S_2O_8(2)$	$\mathrm{HBF}_4\left(20\right)^d$	trace ^c
12	$Pd(OAc)_2(10)$	$(NH_4)_2S_2O_8(2)$	TFA (10)	63
13	$Pd(OAc)_2(5)$	$(NH_4)_2S_2O_8(2)$	TFA (20)	84
14^e	$Pd(OAc)_2(10)$	$(NH_4)_2S_2O_8(2)$	TFA (20)	70
15	$Pd(OAc)_2(0)$	$(NH_4)_2S_2O_8(2)$	TFA (20)	0
16	$Pd(OAc)_2(10)$	$(NH_4)_2S_2O_8(2)$	TFA (0)	0

^{*a*} Reaction conditions: 2-methyl acetanilide (0.5 mmol), *o*-xylene (10.0 mmol, 20.0 equiv), palladium species, additive, and oxidant (1.0 mmol, 2.0 equiv) at room temperature for 24 h under air. ^{*b*} Isolated yield. ^{*c*} Most of the starting materials were consumed. ^{*d*} 40% HBF₄ aqueous solution was used. ^{*e*} 10.0 equiv of *o*-xylene was used. TFA = Trifluoroacetic acid.

III. General procedure for the ortho-arylation reaction of anilides at room temperature

A Schlenk tube was charged with $Pd(OAc)_2$ (11.2 mg, 0.05 mmol), $(NH_4)_2S_2O_8$ (228.0 mg, 1.00 mmol) and anilide derivatives (0.5 mmol) under air. TFA (0.74 mL, 10.0 mmol) and arenes (10.0 mmol) were then added via syringes. After being stirred at room temperature for 24 h, the reaction mixture was diluted with 10 mL of CH_2Cl_2 , filtered through a celite pad, and washed with 10 mL of CH_2Cl_2 . The filtrate was collected and concentrated. The residue was purified by column chromatography on silica gel to provide the desired product.

IV. General procedure for the ortho-acetoxylation reaction of anilides at room temperature

A Schlenk tube was charged with $Pd(OAc)_2$ (11.2 mg, 0.05 mmol), $(NH_4)_2S_2O_8$ (228.0 mg, 1.00 mmol) and anilide derivatives (0.5 mmol) under air. TFA (0.19 mL, 2.5 mmol) and HOAc (0.6 mL, 10.0 mmol) were then added via syringes. After being stirred at room temperature for 24 h, the reaction mixture was diluted with 10 mL of CH_2Cl_2 , filtered through a celite pad, and washed with 10 mL of CH_2Cl_2 . The filtrate was collected and concentrated. The residue was purified by column chromatography on silica gel to provide the desired product.

V. Characterization of the described substances

N-(3-Methyl-[1,1'-biphenyl]-2-yl)acetamide (3a)²

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3a** as a white solid (75.1 mg, 67% yield). M.p.: 128-130 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.01 (s, 3H), 2.31 (s, 3H), 6.65 (s, 1H), 7.17 (t, *J* = 4.8 Hz, 1H), 7.27 (d, *J* = 4.8 Hz, 1H), 7.32 (d, *J* = 7.6 Hz, 3H), 7.36 (d, *J* = 6.4 Hz, 1H), 7.39-7.43 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 18.7, 23.1, 127.46, 127.53, 128.0, 128.4, 129.0, 130.2, 132.7, 136.9, 139.67, 139.73, 169.6 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₆NO [M+H]⁺ 226.1232, found 226.1233.

N-(3,4'-Dimethyl-[1,1'-biphenyl]-2-yl)acetamide (3b)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v)) afforded **3b** as a white solid (94.5 mg, 79% yield). ¹H NMR (400 MHz, methanol- d_4): δ 1.93 (s, 3H), 2.26 (s, 3H), 2.36 (s, 3H), 7.14-7.26 (m, 7H) ppm. ¹³C NMR (100 MHz, methanol- d_4): δ 18.5, 21.2, 22.2, 128.6, 129.1, 129.8, 130.5, 134.2, 137.9, 138.0, 138.4, 141.9, 172.6 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₇NNaO [M+Na]⁺ 262.1208, found 262.1214. The NMR data of **3b** were consistent with the compound obtained through the coupling reaction of N-(*o*-tolyl)acetamide and *p*-tolylboronic acid.³

N-(3,3',4'-Trimethyl-[1,1'-biphenyl]-2-yl)acetamide (3c)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3c** as a white solid (119.8 mg, 95% yield). M.p.: 137-139 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.02 (s, 3H), 2.28-2.31 (m, 9H), 6.64 (s, 1H), 7.06 (dd, J = 7.6 Hz, 1.2 Hz, 1H), 7.10 (s, 1H), 7.15-7.18 (m, 2H), 7.24 (d, J = 4.8 Hz, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 18.8, 19.6, 19.9, 23.2, 126.4, 127.4, 128.0, 129.7, 130.0, 130.2, 132.7, 135.9, 136.7, 136.8, 137.1, 139.4, 169.5 ppm. HRMS

 (ESI^{+}) : calcd for C₁₇H₂₀NO $[M+H]^{+}$ 254.1545, found 254.1545.

N-(2',3,5'-Trimethyl-[1,1'-biphenyl]-2-yl)acetamide (3d)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3d** as a white solid (92.9 mg, 73% yield). M.p.: 116-118 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.89 (s, 3H), 2.03 (s, 3H), 2.30 (s, 3H), 2.31 (s, 3H), 6.47 (s, 1H), 6.90 (s, 1H), 7.04 (d, *J* = 7.2 Hz, 1H), 7.07 (d, *J* = 8.0 Hz, 1H), 7.15 (d, *J* = 7.6 Hz, 1H), 7.20-7.27 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 19.0, 19.5, 21.0, 23.2, 126.9, 127.6, 128.5, 128.7, 130.0, 130.1, 133.1, 133.3, 135.1, 136.3, 138.7, 138.8, 168.7 ppm. HRMS (ESI⁺): calcd for C₁₇H₂₀NO [M+H]⁺ 254.1545, found 254.1546.

N-(3',4'-Dimethoxy-3-methyl-[1,1'-biphenyl]-2-yl)acetamide (3e) and *N*-(2',3'-dimethoxy-3-methyl-[1,1'-biphenyl]-2-yl)acetamide (3e')

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded the mixture of **3e** and **3e'** as a white solid (107.2 mg, 70% yield). The ratio of **3e/3e'** was 5.7/1 as determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃, a mixture of two isomers): δ 2.02 (s, COC<u>H</u>₃, major + minor isomer), 2.30 (s, C<u>H</u>₃, major isomer), 2.33 (s, C<u>H</u>₃, minor isomer), 3.84 (s, OC<u>H</u>₃, major isomer), 3.86 (s, OC<u>H</u>₃, minor isomer), 3.90 (s, OC<u>H</u>₃, minor isomer), 3.91 (s, OC<u>H</u>₃, major isomer), 6.68 (br. s, N<u>H</u>Ac, major isomer), 6.75 (br. s, N<u>H</u>Ac, minor isomer), 6.84-6.92 (m), 7.17 (t, J = 4.8 Hz), 7.24-7.28 (m) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 18. 5, 18. 6, 20.2, 23.0, 55.75, 55.84, 111.0, 111.2, 112.1, 112.5, 121.0, 121.5, 127.4, 127.9, 128.2, 128.6, 129.78, 129.84, 131.6, 132.4, 132.8, 133.6, 136.7, 136.9, 139.5, 140.5, 148.3, 148.4, 148.5, 148.7, 169.5, 172.7 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₉NNaO₃ [M+Na]⁺ 308.1263, found 308.1259.

N-(3',4'-Dichloro-3-methyl-[1,1'-biphenyl]-2-yl)acetamide (3f)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3f** as a white solid (51.7 mg, 35% yield). M.p.: 171-173 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.04 (s, 3H), 2.30 (s, 3H), 6.59 (s, 1H), 7.14 (dd, J = 6.8 Hz, 2.4 Hz, 1H), 7.18 (dd, J = 8.0 Hz, 1.6 Hz, 1H), 7.26-7.29 (m, 2H), 7.42 (d, J = 2.0 Hz, 1H), 7.46 (d, J = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 18.7, 23.1, 127.8, 127.9, 128.4, 130.4, 130.8, 131.0, 131.8, 132.5, 132.6, 137.3, 137.8, 139.8, 169.5 ppm. HRMS (ESI⁺): calcd for C₁₅H₁₃Cl₂NNaO [M+Na]⁺ 316.0272, found 316.0268.

N-(4'-Bromo-3,3'-dimethyl-[1,1'-biphenyl]-2-yl)acetamide (3g) and *N*-(3'-bromo-3,4'-dimethyl-[1,1'-biphenyl]-2-yl)acetamide (3g')

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded the mixture of **3g** and **3g'** as a white solid (49.1 mg, 31% yield). The ratio of **3g/3g'** was 1.5/1 as determined by ¹H NMR. ¹H NMR (400 MHz, CDCl₃, a mixture of two isomers): δ 2.02 (s, COC<u>H₃</u>, major isomer), 2.03 (s, COC<u>H₃</u>, minor isomer), 2.29 (s, C<u>H₃</u>, major + minor isomer), 2.42 (s, C<u>H₃</u>, major isomer), 2.43 (s, C<u>H₃</u>, minor isomer), 6.62 (br. s, N<u>H</u>Ac, major + minor isomer), 7.00 (d, *J* = 8.0 Hz, major isomer), 7.13-7.15 (m), 7.18 (s, major isomer) 7.23-7.30 (m), 7.50 (s, minor isomer), 7.54 (d, *J* = 8.4 Hz, major isomer) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 18.6, 20.3, 22.7, 22.93, 22.95, 23.0, 124.1, 124.7, 127.6, 127.75, 127.82, 127.84, 130.3, 130.4, 130.6, 131.3, 132.2, 132.5, 132.6, 132.7, 136.9, 136.99, 137.02, 137.8, 138.2, 138.8, 139.98, 139.03, 169.55, 169.56 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₆BrKNO [M+K]⁺ 356.0052, found 356.0053.

N-(3',4,4'-Trimethyl-[1,1'-biphenyl]-2-yl)acetamide (3h)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3h** as a white solid (103.9 mg, 82% yield). M.p.: 58-62 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.02 (s, 3H), 2.315 (s, 3H), 2.323 (s, 3H), 2.40 (s, 3H), 6.97 (d, J = 8.0 Hz, 1H), 7.08 (d, J = 8.0 Hz, 1H), 7.10-7.12 (m, 2H), 7.19 (br. s, 1H), 7.22 (d, J = 8.0 Hz, 1H), 8.10 (s, 1H) ppm. ¹³C NMR (100 MHz, 100 MHz, 100 MHz).

CDCl₃): δ 19.6, 19.9, 21.6, 24.7, 122.1, 125.2, 126.6, 129.5, 129.9, 130.3, 130.6, 134.6, 135.8, 136.3, 137.5, 138.2, 168.3 ppm. HRMS (ESI⁺): calcd for C₁₇H₁₉NNaO [M+Na]⁺ 276.1364, found 276.1358.

N-(4-Chloro-3',4'-dimethyl-[1,1'-biphenyl]-2-yl)acetamide (3i)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3i** as a white solid (86.8 mg, 63% yield). M.p.: 66-68 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.02 (s, 3H), 2.32 (s, 3H), 2.33 (s, 3H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.10-7.12 (m, 3H), 7.22 (br. s, 1H), 7.24 (d, *J* = 7.6 Hz, 1H), 8.42 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 19.7, 20.0, 24.8, 121.0, 124.2, 126.5, 130.2, 130.5, 130.6, 131.0, 133.9, 134.6, 136.0, 137.0, 137.9, 168.3 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₆ClNNaO [M+Na]⁺ 296.0818, found 296.0818.

N-(4-Bromo-3',4'-dimethyl-[1,1'-biphenyl]-2-yl)acetamide (3j)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **3j** as a white solid (106.0 mg, 66% yield). M.p.: 88 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.05 (s, 3H), 2.35 (s, 3H), 2.36 (s, 3H), 7.09 (d, *J* = 7.6 Hz, 2H), 7.12 (s, 1H), 7.23 (br. s, 1H), 7.26-7.31 (m, 2H), 8.59 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 19.6, 19.9, 24.8, 121.8, 123.8, 126.4, 127.1, 130.4, 130.5, 130.7, 131.3, 134.6, 136.1, 137.0, 137.9, 168.2 ppm. HRMS (ESI⁺): calcd for C₁₆H₁₆BrNNaO [M+Na]⁺ 340.0313, found 340.0310.

N-(5-Iodo-3',4'-dimethyl-[1,1'-biphenyl]-2-yl)acetamide (3k)

Purification via column chromatography on silica gel (DCM/EtOAc = 40/1, v/v) afforded **3k** as a white solid (80.6 mg, 44% yield). ¹H NMR (400 MHz, CDCl₃): δ 2.01 (s, 3H), 2.32 (s, 3H), 2.33 (s, 3H), 7.06 (d, *J* = 7.6 Hz, 1H), 7.10 (s, 1H), 7.18 (br. s, 1H), 7.24 (d, *J* = 7.6 Hz, 1H), 7.54 (s, 1H), 7.62 (d, *J* = 8.8 Hz, 1H), 8.11 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 19.7, 20.0,

24.8, 87.6, 122.9, 126.3, 130.4, 130.5, 134.0, 134.1, 134.8, 137.0, 137.2, 137.9, 138.6, 168.3 ppm. HRMS (ESI⁺): calcd for $C_{16}H_{16}INNaO [M+Na]^+$ 388.0174, found 388.0173.

Ethyl 6-acetamido-3',4'-dimethyl-[1,1'-biphenyl]-3-carboxylate (3l)

Purification via column chromatography on silica gel (DCM/EtOAc = 40/1, v/v) afforded **31** as a white solid (95.7 mg, 62% yield). ¹H NMR (400 MHz, CDCl₃): δ 1.38 (t, *J* = 7.2 Hz, 3H), 2.05 (s, 3H), 2.337 (s, 3H), 2.343 (s, 3H), 4.36 (q, *J* = 7.2 Hz, 2H), 7.11 (d, *J* = 7.6 Hz, 1H), 7.15 (s, 1H), 7.27 (d, *J* = 5.6 Hz, 1H), 7.42 (br. s, 1H), 7.90 (s, 1H), 8.02 (d, *J* = 8.8 Hz, 1H), 8.49 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 14.4, 19.6, 19.8, 24.8, 60.9, 120.0, 125.7, 126.4, 129.8, 130.50, 130.53, 131.4, 131.5, 134.6, 137.1, 137.9, 139.1, 166.2, 168.3 ppm. HRMS (ESI⁺): calcd for C₁₉H₂₁KNO₃ [M+K]⁺ 350.1159, found 350.1157.

N-(3',4'-Dichloro-3-methyl-[1,1'-biphenyl]-2-yl) pivalamide (3m)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 4/1, v/v) afforded **3m** as a white solid (51.7 mg, 31% yield). M.p.: 154-156 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.17 (s, 9H), 2.24 (s, 3H), 6.82 (br. s, 1H), 7.13 (d, *J* = 6.4 Hz, 1H), 7.15 (d, *J* = 8.4 Hz, 1H), 7.23-7.26 (m, 2H), 7.41 (s, 1H), 7.45 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 18.5, 27.6, 39.2, 127.6, 127.7, 128.6, 130.3, 130.86, 130.90, 131.6, 132.2, 132.8, 137.1, 137.8, 139.8, 177.0 ppm. HRMS (ESI⁺): calcd for C₁₈H₂₀Cl₂NO [M+H]⁺ 336.0922, found 336.0925.

1-(8-(4-Methoxyphenyl)-3,4-dihydroquinolin-1(2*H*)-yl)ethanone (3n)³

Purification via column chromatography on silica gel (petroleum ether/ether = 1/2, v/v)) afforded **3p** as a white solid (119.7 mg, 85% yield). ¹H NMR (400 MHz, CDCl₃): δ 1.46 (s, 3H), 1.69-1.81 (m, 1H), 2.29-2.34 (m, 1H), 2.44-2.52 (m, 1H), 2.69-2.75 (m, 1H), 3.02-3.08 (m, 1H), 3.81 (s, 3H), 4.74-4.81 (m, 1H), 6.94 (d, *J* = 8.8 Hz, 2H), 7.15 (d, *J* = 7.2 Hz, 1H), 7.23-7.29 (m, 4H) ppm. ¹³C

NMR (100 MHz, CDCl₃): δ 21.9, 24.3, 26.8, 41.6, 55.2, 114.5, 126.3, 126.9, 128.5, 129.4, 131.3, 137.3, 137.5, 138.1, 159.0, 170.3 ppm.

1-(8-(3,4-Dimethylphenyl)-3,4-dihydroquinolin-1(2*H*)-yl)ethanone (30)⁴

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 4/1, v/v) afforded **30** as a white solid (112.4 mg, 80% yield). M.p.: 88-90 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.41 (s, 3H), 1.66-1.74 (m, 1H), 2.20 (s, 6H), 2.26 (s, 1H), 2.38-2.44 (m, 1H), 2.65-2.68 (m, 1H), 2.98-3.04 (m, 1H), 4.66-4.73 (m, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 7.03 (s, 1H), 7.09 (d, *J* = 8.0 Hz, 2H) 7.17-7.25 (m, 2H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 18.5, 19.0, 21.0, 23.5, 26.0, 40.8, 124.7, 125.5, 125.9, 127.8, 128.5, 129.3, 135.0, 135.7, 136.2, 136.7, 137.0, 137.2, 169.4 ppm. HRMS (ESI⁺): calcd for C₁₉H₂₁NNaO [M+Na]⁺ 302.1521, found 302.1518.

1-(7-(3,4-Dimethylphenyl)indolin-1-yl)ethanone (3p)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 4/1, v/v) afforded **3p** as a white solid (112.1 mg, 84% yield). M.p.: 164-167 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.46 (br. s, 3H), 2.28 (s, 6H), 3.02 (t, *J* = 6.8 Hz, 2H), 4.30 (s, 2H), 7.14-7.24 (m, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 19.5, 19.9, 22.7, 29.3, 50.6, 123.5, 124.8, 125.4, 128.5, 129.4, 130.4, 131.5, 135.7, 136.6, 137.4, 138.0, 140.3 ppm. HRMS (ESI⁺): calcd for C₁₈H₁₉NNaO [M+Na]⁺ 288.1364, found 288.1369.

2-Acetamidophenyl acetate (4a)⁵

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 1/1, v/v) afforded **4a** as a white solid (65.0 mg, 67% yield). M.p.: 120-122 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.18 (s, 3H), 2.37 (s, 3H), 7.13 (d, *J* = 4.0 Hz, 2H), 7.18 (br. s, 1H), 7.23 (dd, *J* = 8.4 Hz, 4.4 Hz, 1H), 8.14 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 24.4, 122.2, 123.4, 125.0, 126.5, 129.8, 141.0, 168.6, 169.0 ppm. HRMS (ESI⁺): calcd for C₁₀H₁₁NNaO₃ [M+Na]⁺ 216.0637, found

216.0635.

NHAc

2-Acetamido-4-methylphenyl acetate (4b)⁶

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 1/1, v/v) afforded **4b** as a white solid (78.0 mg, 75% yield). M.p.: 137-140 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.16 (s, 3H), 2.34 (s, 6H), 6.92 (d, *J* = 8.0 Hz, 1H), 6.99 (d, *J* = 8.0 Hz, 1H), 7.15 (br. s, 1H), 7.92 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 21.3, 24.6, 121.8, 123.8, 125.7, 129.3, 136.5, 138.8, 168.4, 169.2 ppm. HRMS (ESI⁺): calcd for C₁₁H₁₃NNaO₃ [M+Na]⁺ 230.0793, found 230.0789.

2-Acetamido-5-methylphenyl acetate (4c)⁷

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 1/1, v/v) afforded **4c** as a white solid (52.9 mg, 51% yield). M.p.: 154-155 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.16 (s, 3H), 2.32 (s, 3H), 2.35 (s, 3H), 6.93 (s, 1H), 7.03 (d, *J* = 8.4 Hz, 1H), 7.07 (br. s, 1H), 7.91 (d, *J* = 8.4 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.0, 21.2, 24.5, 122.6, 123.7, 127.0, 127.3, 135.5, 141.2, 168.4, 169.1 ppm. HRMS (ESI⁺): calcd for C₁₁H₁₃NNaO₃ [M+Na]⁺ 230.0793, found 230.0794.

2-Acetamido-4-bromophenyl acetate (4d)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 1/1, v/v) afforded **4d** as a white solid (106.4 mg, 76% yield). M.p.: 171-172 °C. ¹H NMR (400 MHz, DMSO- d_6): δ 2.09 (s, 3H), 2.30 (s, 3H), 7.11 (d, J = 8.8 Hz, 1H), 7.30 (dd, J = 8.4 Hz, 2.4 Hz, 1H), 8.18 (d, J = 2.0 Hz, 1H), 9.54 (s, 1H) ppm. ¹³C NMR (100 MHz, DMSO- d_6): δ 21.2, 23.7, 117.6, 125.1, 125.4, 126.7, 132.3, 140.2, 168.90, 168.93 ppm. HRMS (ESI⁺): calcd for C₁₀H₁₀BrNNaO₃ [M+Na]⁺ 293.9742, found 293.9741.

2-Acetamido-4-chlorophenyl acetate (4e)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 1/1, v/v) afforded **4e** as a white solid (82.7 mg, 73% yield). M.p.: 168-170 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.18 (s, 3H), 2.36 (s, 3H), 7.06-7.10 (m, 2H), 7.20 (br. s, 1H), 8.29 (s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.2, 24.8, 122.4, 123.1, 124.5, 130.8, 131.9, 138.6, 168.2, 168.5 ppm. HRMS (ESI⁺): calcd for C₁₀H₁₀ClNNaO₃ [M+Na]⁺ 250.0247, found 250.0249.

Ethyl 4-acetamido-3-acetoxybenzoate (4f)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 1/1, v/v) afforded **4f** as a white solid (77.2 mg, 58% yield). M.p.: 132-133 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.37 (t, *J* = 7.2 Hz, 3H), 2.21 (s, 3H), 2.39 (s, 3H), 4.35 (q, *J* = 7.2 Hz, 2H), 7.37 (s, 1H), 7.80 (d, *J* = 2.0 Hz, 1H), 7.91 (dd, *J* = 8.4 Hz, 1.6 Hz, 1H), 8.39 (br. s, 1H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 14.2, 21.3, 23.9, 60.8, 122.2, 124.0, 125.0, 126.9, 135.4, 140.1, 164.8, 169.1, 169.2 ppm. HRMS (ESI⁺): C₁₃H₁₅NNaO₅ [M+Na]⁺ 288.0848, found 288.0851

2-Acetamido-3-nitrophenyl acetate (4g)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 1/1, v/v) afforded **4g** as a white solid (43.1 mg, 35% yield). M.p.: 181-183 °C. ¹H NMR (400 MHz, CDCl₃): δ 2.22 (s, 3H), 2.30 (s, 3H), 7.39 (t, *J* = 8.0 Hz, 1H), 7.51 (d, *J* = 8.0 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 8.24 (br. s, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 21.1, 23.8, 122.5, 125.1, 126.3, 129.6, 144.6, 146.4, 168.1, 168.3 ppm. HRMS (ESI⁺): calcd for C₁₀H₁₀N₂NaO₅ [M+Na]⁺ 261.0487, found 261.0487.

1-Acetyl-1,2,3,4-tetrahydroquinolin-8-yl acetate (4h)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) afforded **4h** as a white solid (86.9 mg, 74% yield). M.p.: 94-96 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.73 (s, 1H), 2.03 (s, 3H), 2.20 (s, 1H), 2.26 (s, 3H), 2.55 (s, 1H), 2.72-2.76 (m, 1H), 2.89 (s, 1H), 4.56 (s, 1H), 6.99 (d, *J* = 8.4 Hz, 1H), 7.09 (d, *J* = 6.8 Hz, 1H), 7.20 (t, *J* = 7.6 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 20.8, 21.7, 24.1, 26.3, 41.2, 120.7, 125.7, 126.9, 133.0, 137.8, 144.6, 168.6, 170.7 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₆NO₃ [M+H]⁺ 234.1130, found 234.1132.

2-Acetamidophenyl pivalate (4i)

Purification via column chromatography on silica gel (petroleum ether/EtOAc = 1/1, v/v) afforded **4i** as a white solid (86.1 mg, 73% yield). M.p.: 85-87 °C. ¹H NMR (400 MHz, CDCl₃): δ 1.40 (s, 9H), 2.14 (s, 3H), 7.07 (d, *J* = 8.0 Hz, 1H), 7.13 (t, *J* = 7.2 Hz, 2H), 7.22 (t, *J* = 7.6 Hz, 1H), 8.07 (d, *J* = 8.0 Hz, 1H) ppm. ¹³C NMR (100 MHz, CDCl₃): δ 24.5, 27.3, 39.5, 122.1, 123.4, 125.1, 126.5, 129.9, 141.2, 168.1, 176.4 ppm. HRMS (ESI⁺): calcd for C₁₃H₁₈NO₃ [M+H]⁺ 236.1287, found 236.1288.

VI. The synthesis and characterization of bimetallic palladacycles 5a and 5b⁸

Bimetallic palladium complex 5a

To a 25 mL round-bottom flask was added *N*-(*o*-tolyl)acetamide (149.0 mg, 1.0 mmol), Pd(OAc)₂ (224.0 mg, 1.0 mmol), DCM (10 mL) and TFA (156.0 μ L, 2.1 mmol) under air. After being stirred at room temperature for 8 h, the reaction mixture was diluted with 30 mL of EtOAc, filtered through a celite pad, and washed with 10 mL of EtOAc. The filtrate was collected and concentrated. The residue was recrystallized from EtOAc/hexane to give the palladium complex **5a** as a yellow solid (316 mg, 86% yield). ¹H NMR (400 MHz, DMSO-*d*₆): δ 2.35 (s, 6H), 2.43 (s, 6H), 6.93 (t, *J* = 6.4 Hz, 2H), 7.01 (d, *J* = 6.4 Hz, 2H), 7.32 (br. s, 2H), 10.92 (s, 2H) ppm. ¹³C NMR (100 MHz, DMSO-*d*₆): δ 18.8, 21.2, 125.1, 125.8, 128.4, 130.6, 132.0, 159.2, 171.5 ppm. HRMS (ESI⁺): calcd for C₉H₁₀NOPd [monomer-TFA]⁺ 253.9797, found 253.9796.

Bimetallic palladium complex 5b

Following the same procedure as complex **5a**. *N*-phenylacetamide (135.0 mg, 1.0 mmol) was used. Complex **5b** was obtained as a yellow solid (306 mg, 90% yield). ¹H NMR (400 MHz, acetone- d_6): δ 1.46 (s, 6H), 6.86-6.90 (m, 4H), 7.03 (d, *J* = 8.0 Hz, 2H), 7.08 (t, *J* = 7.6 Hz, 2H), 10.49 (s, 2H) ppm. ¹³C NMR (100 MHz, acetone- d_6): δ 20.2, 116.7, 123.8, 126.3, 131.9, 133.5, 167.9 ppm. HRMS (ESI⁺): calcd for C₈H₈NOPd [monomer-TFA]⁺ 239.9641, found 239.9633.

VII. The reaction of complex 5a with o-xylene

A Schlenk tube was charged with **5a** (73.7 mg, 0.1 mmol), TFA (296 μ L, 4.0 mmol) and *o*-xylene (0.48 mL, 4.0 mmol) under air. After being stirred at room temperature for 24 h, the reaction mixture was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10 mL of CH₂Cl₂. The filtrate was collected and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) to afford 46.4 mg of **3c** in 92% yield. No reaction happened if TFA was absent from the reaction mixture.

VIII. The acetoxylation of complex 5b

A Schlenk tube was charged with *N*-phenylacetamide (67.6 mg, 0.5 mmol), $(NH_4)_2S_2O_8$ (228.0 mg, 1.00 mmol), complex **5b** (17.0 mg, 0.025 mmol) and HOAc (0.6 mL, 10.0 mmol) under air. After being stirred at room temperature for 24 h, the reaction mixture was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10 mL of CH₂Cl₂. The filtrate was collected and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 1/1, v/v) to afford 59.6 mg of **4a** in 62% yield. No reaction happened if $(NH_4)_2S_2O_8$ was absent from the reaction mixture.

IX. Intermolecular kinetic isotope effect

A Schlenk tube was charged with *N*-(*o*-tolyl)acetamide **1a** (75.0 mg, 0.5 mmol), Pd(OAc)₂ (11.2 mg, 0.05 mmol) and (NH₄)₂S₂O₈ (228.0 mg, 1.0 mmol) under air. TFA (0.74 mL, 10.0 mmol), benzene (0.45 mL, 5.0 mmol) and benzene- d_6 (0.45 mL, 5.0 mmol) were added via syringes. After being stirred at room temperature for 8 h, the reaction mixture was diluted with 10 mL of CH₂Cl₂, filtered through a celite pad, and washed with 10 mL of CH₂Cl₂. The filtrate was collected and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/EtOAc = 2/1, v/v) to afford **3a** and **3a**- d_5 as an inseparable mixture (53.1 mg, 47% yield). The ratio of **3a/3a**- d_5 was

2.6/2.4 ($k_H/k_D = 1.1$) as determined by ¹H NMR.

X. References

- 1 B. S. Kim, C. Jang, D. J. Lee and S. W. Youn, *Chem. Asian. J.*, 2010, 5, 2336.
- 2 O. Daugulis and V. G. Zaitsev, Angew. Chem. Int. Ed., 2005, 44, 4046.
- 3 Z. Shi, B. Li, X. Wan, J. Cheng, Z. Fang, B. Cao, C. Qin and Y. Wang, *Angew. Chem. Int. Ed.*, 2007, **46**, 5554.
- 4 B.-J. Li, S.-L. Tian, Z. Fang and Z.-J. Shi, Angew. Chem. Int. Ed., 2008, 47, 1115.
- 5 T.-S. Li and A.-X. Li, J. Chem. Soc., Perkin Trans. 1, 1998, 1913.
- 6 G. Galliani and B. Rindone, J. Chem. Res., 1980, 5, 2524.
- 7 G.-W. Wang, T.-T. Yuan and X.-L. Wu, J. Org. Chem., 2008, 73, 4717.
- 8 C. S. Yeung, X. Zhao, N. Borduas and V. M. Dong, Chem. Sci., 2010, 1, 331.

XI. ¹H-¹H NOESY spectrum of the mixture of 3g and 3g'

