Electronic Supplementary Information

Controllable formation of aromatic nanoparticles in a three-dimensional hydrodynamic flow focusing microfluidic device

Liguo Jiang,^a Weiping Wang,^b Ying Chau^{a,b} and Shuhuai Yao *^{a,c}

^aDivision of Biomedical Engineering, Bioengineering Graduate Program, ^bDepartment of Chemical and Biomolecular Engineering, ^cDepartment of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China. Corresponding author. E-mail: meshyao@ust.hk

Fig. S1 Formation of aromatic NPs in a 2DHFF device. Central stream: 400 μ M FTAEA in DMF/water (75/25, volume ratio) solution. Side streams: nanopurified water. (a) At the beginning of the experiment. (b) After 3 minutes running of the experiment. Aggregates severely stick on channel surfaces.

Fig. S2 Cross section images of 3D focused streams at different flow conditions, taken at 40 μ m downstream at cross section B in Fig. 1b. Flow rates in experiments: $Q_{bf1}-Q_{bf2}-Q_{sa}-Q_{Wt} \mu l/min$ (a) 1.1-1.1-0.3-20; (b) 1-1-0.5-20; (c) 0.85-0.85-0.8-20.

Fig. S3 DLS measurements of self-assembled FTAEA NPs at different FRR conditions with the sample stream containing an FTAEA initial concentration of 10 mM.