Copper-catalyzed Synthesis of Benzazoles *via* Aerobic Oxidative Condensation of *o*-Amino/Mercaptan/Hydroxyanilines with

Benzylamines

Tiebo Xiao, Shengwei Xiong, Yang Xie, Xichang Dong and Lei Zhou*

School of Chemistry and Chemical Engineering, Sun Yat-Sen University, 135 Xingang west Road, Guangzhou 510275, China.

E-mail:zhoul39@mail.sysu.edu.cn

Representative experimental procedure: synthesis of 3a: To a 10 mL test-tube was added CuBr₂ (0.44 mg, 1 mol%), *o*-phenylenediamine **2a** (0.2 mmol), benzylamine **1a** (0.3 mmol) and toluene (2 mL). The reaction mixture was stirred at 100°Gunder air for 24 h. After cooling to room temperature, the resulting mixture was filtered through a short path of silica gel, eluting with ethyl acetate. The volatile compounds were removed in vacuo and the residue was purified by flash column chromatography on silica gel (eluent: hexane/ethyl acetate 5:1). Unless other indicated, the experiments in Tables 2 and 3 were carried out analogously. All products were purified by column chromatography and characterized by NMR spectroscopy and standard mass spectrometry.

Spectral data for the products

2-phenyl-1H-benzo[d]imidazole(3a)¹:

IR (film) 698, 825, 1026, 1159, 1259, 1405, 1456, 1595, 1630, 2931, 2959 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.92 (br s, 1H), 8.20 (d, *J*=7.2 Hz, 2H), 7.67 (m, 1H), 7.55-7.43 (m, 4H),

7.20-7.18 (m, 2H); ¹³C NMR (75 MHz, DMSO-d₆) δ 151.9, 144.5, 135.6, 130.8, 130.5, 129.6, 127.1, 123.2, 122.4, 119.5, 111.9; EI-MS (m/z, relative intensity): 194 (M⁺, 100), 166 (9), 104 (6), 90 (8), 77 (7).

2-*p*-tolyl-1**H**-benzo[d]imidazole(3b)¹:

IR (film) 687, 762, 1070, 1432, 1495, 1546, 1653, 2923 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.82 (br s, 1H), 8.07 (d, *J*=8.1 Hz, 2H), 7.64-7.50 (m, 2H), 7.32 (d, *J*=8.1

Hz, 2H), 7.17 (d, *J*=7.5 Hz, 2H), 2.35(s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ 152.0, 144.5, 140.2, 135.6, 130.1, 128.1, 127.1, 122.9, 122.2, 119.4, 111.9, 21.8; EI-MS (m/z, relative intensity): 208 (M⁺, 100), 192 (4), 116 (6), 103 (10), 91 (7).

2-*m*-tolyl-1H-benzo[d]imidazole(3c)²:

IR (film) 703, 806, 1110, 1145, 1407, 1462, 1546, 1601, 1632, 2924 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.86 (br s, 1H), 8.03 (s, 1H), 7.97 (d, *J*=7.5 Hz, 1H), 7.59 (m, 2H), 7.40 (t,

J=7.5 Hz, 1H), 7.26 (d, J=7.5 Hz, 1H), 7.26-7.17 (m, 2H), 2.39(s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ 152.0, 144.5, 138.8, 135.6, 131.1, 130.8, 129.5, 127.7, 124.3, 122.9, 119.4, 122.0, 21.9; EI-MS (m/z, relative intensity): 208 (M⁺, 100), 192(4), 180 (4), 116 (4), 103 (13), 91 (8).

2-*o*-tolyl-1H-benzo[d]imidazole(3d)³:

IR (film) 713, 760, 876, 1050, 1462, 1528, 1623, 1671, 2926 cm^{-1} ; ¹H NMR (300 MHz, DMSO-d₆) δ 12.62 (br s, 1H), 7.76-7.73 (m, 1H), 7.68 (m, 1H), 7.53 (m, 1H), 7.36-7.30 (m, 3H), 7.21-7.19 (m, 2H), 2.62(s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ 152.6, 144.4, 137.7, 135.5, 131.9, 130.8, 130.1, 129.9, 126.6, 122.9, 122.0, 119.6, 111.9, 21.9; EI-MS (m/z, relative intensity): 208 (M⁺, 80), 207(100), 180 (4), 116 (3), 103 (13), 91 (7).

2-(4-fluorophenyl)-1H-benzo[d]imidazole(3e)⁴:

IR (film) 703, 973, 1145, 1310, 1408, 1467, 1537, 1630, 2924 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.91 (br s, 1H), 8.24 (d, *J*=8.7 Hz, 1H), 8.22 (d, *J*=8.7 Hz, 1H),

7.63-7.55 (m, 2H), 7.37 (t, J=8.7 Hz, 2H), 7.20-7.17 (m, 2H); ¹³C NMR (75 MHz, DMSO-d₆) δ 163.7 (d, J=245.9Hz), 151.0, 129.4, 129.3, 127.5, 123.1, 122.4, 110.5, 116.7, 116.5, 111.9; EI-MS (m/z, relative intensity): 212 (M⁺, 100), 180 (7), 122 (5), 106 (7), 91 (8), 64(9).

2-(4-chlorophenyl)-1H-benzo[d]imidazole(3f)¹:

IR (film) 550, 694, 774, 1061, 1386, 1443, 1528, 1623, 2914 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.97 (br s, 1H), 8.18 (d, *J*=8.7 Hz, 2H), 7.60-7.57 (m, 4H), 7.21-7.17 (m,

2H); ¹³C NMR (75 MHz, DMSO-d₆) δ 150.8, 144.3, 137.4, 135.6, 135.1, 129.7, 128.8, 123.2, 122.6, 119.4, 112.1; EI-MS (m/z, relative intensity): 228 (M⁺, 100) (Cl³⁵), 230 (M⁺, 30) (Cl³⁷), 193 (20), 166 (7), 138(3), 90 (7), 63(10).

2-(4-bromophenyl)-1H-benzo[d]imidazole(3g)⁵:

IR (film) 564, 698, 777, 1025, 1159, 1269, 1405, 1433, 1456, 1595, 2931 cm⁻¹;¹H NMR (300 MHz, DMSO-d₆) δ 12.98 (br s, 1H), 8.11 (d, *J*=8.4 Hz, 2H), 7.73 (d, *J*=8.4 Hz,

2H), 7.66-7.52 (m, 2H), 7.19 (d, J=7.8 Hz, 2H); ¹³C NMR (75 MHz, DMSO-d₆) δ 150.8, 144.3, 135.6, 132.6, 130.1, 129.0, 123.9, 123.4, 122.5, 119.6, 112.1; EI-MS (m/z, relative intensity): 272 (M⁺, 100) (Br⁷⁹), 274 (M⁺, 94) (Br⁸¹), 193 (65), 166 (16), 90 (20), 63 (17).

2-(4-methoxyphenyl)-1H-benzo[d]imidazole(3h)¹:

(m, 2H), 7.08 (d, J=8.7 Hz, 2H); ¹³C NMR (75 MHz, DMSO-d₆) δ 161.2, 151.9, 144.5, 135.6, 128.7, 123.4, 122.7, 122.4, 119.2, 115.0, 111.7; EI-MS (m/z, relative intensity): 224 (M⁺, 100), 209 (57), 181 (45), 112 (7), 90 (8), 77 (9).

2-(pyridin-2-yl)-1H-benzo[d]imidazole(3i)¹:

IR (film) 744, 1011, 1427, 1447, 1489, 1551, 1595, 1664, 1694, 1792, 2912 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 13.09 (br s, 1H), 8.70 (d, *J*=7.8 Hz, 1H), 8.31 (d, *J*=8.1 Hz, 1H), 7.97 (t,

J=7.8 Hz, 1H), 7.68 (d, *J*=7.5 Hz, 1H), 7.50 (q, *J*=7.5 Hz, 2H), 7.25-7.15 (m, 2H); ¹³C NMR (75 MHz, DMSO-d₆) δ 151.3, 149.9, 149.2, 144.6, 138.1, 135.5, 125.5, 123.7, 122.5, 122.1, 119.9, 112.7; EI-MS (m/z, relative intensity): 195 (M⁺, 100), 167 (17),

105 (6), 78 (12).

2-(furan-2-yl)-1H-benzo[d]imidazole(3j)⁶:

IR (film) 874, 1265, 1406, 1546, 1633, 1653, 2922 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.88 (br s, 1H), 7.92 (s, 1H), 7.59-7.42 (m, 2H), 7.18-7.17 (m, 3H), 6.17 (s, 1H); ¹³C NMR (75 MHz,

DMSO-d₆) δ146.3, 145.1, 145.0, 144.3, 122.8, 119.4, 112.8, 111.9, 111.1; EI-MS (m/z, relative intensity): 184 (M⁺, 100), 155 (26), 129 (12), 91 (10).

2-(thiophen-2-yl)-1H-benzo[d]imidazole(3k)⁶:

IR (film) 764, 831, 965, 1273, 1429, 1447, 1471, 1490, 1602, S 2911 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.91 (br s, 1H), 7.82 (d, J=3.6 Hz, 1H), 7.70 (d, J=4.8 Hz, 1H), 7.56-7.50 (m, 2H),

7.22-7.16 (m, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ 147.7, 135.3, 134.4, 129.3, 128.9, 127.3, 123.1, 122.4, 119.1, 111.7; EI-MS (m/z, relative intensity): 200 (M⁺, 100), 156 (6), 96 (8), 62 (10).

5-methyl-2-phenyl-1H-benzo[d]imidazole(3l)¹:

IR (film) 687, 762, 804, 961, 1069, 1431, 1475, 1505, 1634,
-Ph 2919 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.78 (br s, 1H),
8.18 (d, *J*=7.2 Hz, 2H), 7.54-7.33 (m, 5H), 7.01 (d, *J*=8.1 Hz,

1H); ¹³C NMR (75 MHz, DMSO-d₆) δ 151.6, 142.6, 142.6, 135.8, 132.5, 131.0, 129.5, 126.9, 124.5, 124.0, 119.1, 111.7, 22.2; EI-MS (m/z, relative intensity): 208 (M⁺, 100), 104 (26), 77 (22).

7-methyl-2-phenyl-1H-benzo[d]imidazole(3m)⁷;mixture of tautomers

Me H N Ph

IR (film) 699, 742, 859, 1025, 1101, 1271, 1417, 1441, 1469, 1541, 1634, 2721, 2914 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.80 (br

s, 0.5H), 12.54 (br s, 0.4H), 8.25-8.14 (m, 2H), 7.55-7.31 (m, 4H), 7.11-6.96 (m, 2H), 2.59-2.56 (m, 3H), ; ¹³C NMR (75 MHz, DMSO-d₆) δ 156.5, 155.7, 148.9, 148.6, 139.9, 135.7, 134.9, 134.2, 134.1, 133.7, 132.1, 131.8, 128.5, 127.8, 127.8, 127.2, 127.1, 126.7, 121.7, 114.2, 22.7, 22.3; EI-MS (m/z, relative intensity): 208 (M⁺, 100), 104 (28), 77 (24), 51 (9).

5-methoxy-2-phenyl-1H-benzo[d]imidazole(3n)⁵:

IR (film) 741, 764, 975, 1108, 1274, 1402, 1443, 1528, 1590, 1623, 2791, 2878 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.76 (br s, 1H), 8.14 (d, *J*=7.2 Hz, 2H), 7.53-7.40 (m, 4H),

7.09 (m, 1H), 6.84 (d, J=8.7 Hz, 1H), 3.79 (s, 3H); ¹³C NMR (75 MHz, DMSO-d₆) δ 161.2, 156.2, 156.2, 135.7, 134.8, 134.2, 131.5, 117.1, 117.0, 61.0; EI-MS (m/z, relative intensity): 224 (M⁺, 100), 209 (97), 181 (38), 154 (22), 127 (12), 104 (7), 77 (16), 51 (13).

5-chloro-2-phenyl-1H-benzo[d]imidazole(30)¹:

(75 MHz, DMSO-d₆) δ 158.0, 135.5, 135.1, 134.3, 132.0, 127.7; EI-MS (m/z, relative intensity): 228 (M⁺, 100) (Cl³⁵), 230 (M⁺, 29) (Cl³⁷), 192 (10), 166 (8), 90 (8), 63 (13).

5-fluoro-2-phenyl-1H-benzo[d]imidazole(3p)²:

IR (film) 619, 687, 762, 961, 1071, 1249, 1432, 1474, 1505,
-Ph 1632, 2922 cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 13.03 (br s, 1H), 8.17 (d, *J*=7.5 Hz, 2H), 7.58-7.39 (m, 5H), 7.08-7.01 (m,

1H); ¹³C NMR (75 MHz, DMSO-d₆) δ 159.3 (d, *J*=234.0Hz), 153.3, 130.6, 129.6, 128.6, 127.1, 110.9, 110.6; EI-MS (m/z, relative intensity): 212 (M⁺, 100), 184 (8), 106 (9), 82 (10).

2-phenyl-1H-naphtho[**2**,**3-d**]**imidazole**(**3q**)⁷**:**

IR (film) 653, 816, 872, 1143, 1441, 1474, 1569, 1655, 2953
-Ph cm⁻¹; ¹H NMR (300 MHz, DMSO-d₆) δ 12.99 (br s, 1H), 8.33 (d, *J*=6.9 Hz, 2H), 8.23-7.98 (m, 4H), 7.61-7.50 (m, 3H),

7.36-7.33 (m, 2H); ¹³C NMR (75 MHz, DMSO-d₆) δ 156.0, 145.0, 136.6, 131.3, 130.8, 130.5, 129.6, 127.8, 127.7, 124.2, 123.8, 115.9, 107.3; ESI-MS m/z 244.9 (M+H)⁺.

2-phenylbenzo[d]thiazole(3r)¹:

2-phenylbenzo[d]oxazole(3s)¹:

IR (film) 683, 746, 935, 1050, 1421, 1586, 1647, 3051 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.26 (d, J=5.1 Hz, 2H), 7.77 (t, J=3.0 Hz, 1H), 7.59-7.53 (m, 4H), 7.36-7.34 (t, J=3.0 Hz, 2H); ¹³C NMR (75 MHz, CDCl₃) δ 163.2, 150.9, 142.3, 131.7, 129.1, 127.8, 127.4, 125.3, 124.7, 120.2, 110.7; EI-MS (m/z, relative intensity): 196 (M⁺, 14), 195 (100), 167 (24), 92 (8), 77 (10), 63 (18).

7-methyl-2-phenylbenzo[d]oxazole(3t)⁸:

IR (film) 613, 699, 859, 1025, 1417, 1541, 1634, 3047 cm⁻¹; ¹H NMR (300 MHz, CDCl₃) δ 8.24-8.21 (m, 2H), 7.63 (d, *J*=8.1 Hz, 1H), 7.52-7.47 (m, 2H), 7.38 (s, 1H), 7.16 (d, *J*=8.1 Hz, 1H), 2.52 (s,

3H); ¹³C NMR (75 MHz, CDCl₃) δ 162.7, 151.2, 140.1, 131.6, 131.4, 129.0, 128.8, 127.6, 125.9, 119.5, 110.9, 22.2; EI-MS (m/z, relative intensity): 210 (M⁺, 14), 209 (100), 180 (14), 106 (26), 78 (43), 51 (13).

Reference

- T. B. Nguyen, L. Ermolenko, W. A. Dean and A. Al-Mourabit, *Org. Lett.* 2012, 14, 5948.
- 2, M. Shen and T. G. Driver, Org. Lett. 2008, 15, 3367.
- 3, J. Li, S. Benard, L. Neuville and J. Zhu, Org. Lett. 2012, 14, 5980.
- Y. Riadi, R. Mamouni, R. Azzalou, M. El Haddad, S. Routier, G. Guillaumet and S. Lazar, *Tetrahedron Lett.* 2011, **52**, 3492.
- J. Peng, M. Ye, C. Zong, F. Hu, L. Feng, X. Wang, Y. Wang, and C. Chen, J. Org. Chem. 2011, 76, 716.
- 6, Y. Kim, M. R. Kumar, N. Park, Y. Heo and S. Lee, J. Org. Chem. 2011, 76, 9577.
- 7, Y. Wang, K. Sarris, D. R. Sauer and S. W. Djuric, Tetrahedron Lett. 2006, 47,

4823.

V. N. Bochatay, P. J. Boissarie, J. A. Murphy, C. J. Suckling and S. Lang, *J. Org. Chem.* 2013, **78**, 1471.

Ť

ppm (t1)

