Supporting Information

Flexible, Optically Transparent, High Refractive, and Thermally Stable Polyimide/TiO₂ Hybirds for Anti-Reflection Coating

By Hung-Ju Yen,^T Chia-Liang Tsai,^T Pei-Hsuan Wang, Jiang-Jen Lin, and Guey-Sheng Liou*

Functional Polymeric Materials Laboratory, Institute of Polymer Science and Engineering,

National Taiwan University, Taipei, Taiwan

Tel: +886-2-336-5315; Fax: +886-2-336-5237; E-mail: gsliou@ntu.edu.tw

T equal contribution to this work

List of Contents for Supplementary Material:

Figure S1. FT-IR spectra of compounds (a) F-DN, (b) 3S-DN, (c) F-DN, and (d) 3S-DN
Figure S2. (a) ¹ H NMR and (b) ¹³ C NMR spectra of compound F-DA in DMSO- d_6 <u>SI-3</u>
Figure S3. (a) ¹ H NMR and (b) ¹³ C NMR spectra of compound 3S-DA in DMSO- d_{6SI-4}
Figure S4. FT-IR spectra of the studied films (a) F-PHI-b, and (b) F-bTP50
Figure S5. TGA thermograms of (a) F-aTPX, (b) F-bTPX, and (c) 3S-aTPX hybrid
materials
Figure S6. TEM image of the hybrid material (a) F-aTP50 and (b) 3S-aTP50
Figure S7. XRD patterns of (a) F-aTPX and (b) 3S-aTPX hybrid materials
Figure S8. Transmittance UV-visible spectra of (a)(b) F-aTPX and (c)(d) 3S-aTPX hybrid
films
Figure S9. Variation of the refractive index of (a) F-aTPX and (b) 3S-aTPX hybrid materials
with wavelength. The insert figure shows the variation of refractive index at 633
nm with titania content
Table S1. Reaction composition and properties of the F-PHI-a hybrid films
Table S2. Reaction composition and properties of the 3S-PHI-a hybrid films
Table S3. Thermal and Optical Properties of F-PHI-a Hybrid films
Table S4. Thermal and Optical Properties of 3S-PHI-a Hybrid films

Figure S1. FTIR spectra of compounds (a) F-DN, (b) 3S-DN, (c) F-DN, and (d) 3S-DN.

Figure S3. (a) ¹H NMR and (b) ¹³C NMR spectra of compound 3S-DA in DMSO- d_6 .

Figure S4. FT-IR spectra of the studied films (a) F-PHI-b and (b) F-bTP50.

Figure S5. TGA thermograms of (a) F-aTPX, (b) F-bTPX, (c) 3S-aTPX hybrid materials in nitrogen and (d) F-aTPX, (e) F-bTPX, (f) 3S-aTPX hybrid materials in air.

Figure S6. TEM image of the hybrid material (a) F-aTP50 and (b) 3S-aTP50.

Figure S7. XRD patterns of (a) F-aTPX and (b) 3S-aTPX hybrid materials.

Figure S8. Transmittance UV-visible spectra of (a) **F-aTPX** thick films $(13 \pm 2 \ \mu\text{m})$ (b) **F-aTPX** thin films (550~750nm), (c) **3S-aTPX** thick films (13 ± 2 $\ \mu\text{m}$), and (d) **3S-aTPX** thin films (550~750nm).

Figure S9. Variation of the refractive index of (a) **F-aTPX** and (b) **3S-aTPX** hybrid materials with wavelength. The insert figure shows the variation of refractive index at 633 nm with titania content.

Dalamaan	Reactant comp	postition (wt%)	Hybrid film T		
Polymer	F-PHI-a	Ti(OBu) ₄	Theoretical	Experimental ^a	n^b
F-PHI-a	100	0	0	0	1.62
F-aTP10	67.8	32.2	10	9.8	1.67
F-aTP30	35.4	64.6	30	29.9	1.72
F-aTP50	19.0	81.0	50	49.4	1.80

Table S1. Reaction composition and properties of the F-PHI-a hybrid films

^{*a*} Experimental titania content estimated from TGA curves.

^{*b*} *n*: Refractive index at 633nm by ellipsometer.

Dalarraan	Reactant comp	ostition (wt%)	Hybrid film T		
Polymer	3S-PHI-a	Ti(OBu) ₄	Theoretical	Experimental ^a	n^b
3S-PHI-a	100	0	0	0	1.70
3S-aTP10	67.8	32.2	10	9.3	1.72
3S-aTP30	35.4	64.6	30	28.9	1.77
3S-aTP50	19.0	81.0	50	49.2	1.84

Table S2. Reaction composition and properties of the 3S-PHI-a hybrid films

^{*a*} Experimental titania content estimated from TGA curves.

^{*b*} *n*: Refractive index at 633nm by ellipsometer.

	Thermal Properties							Optical Properties		
Index	Tg	CTE	$T_{\rm d}^{\ 5}$ ($(^{\circ}C)^{c}$	$T_{\rm d}{}^{10}$	$(^{\circ}C)^{c}$	$R_{ m w800}$	λ_0	- f	A 8
	$(^{\circ}C)^{a}$	$(\text{ppm/K})^b$	N_2	Air	N_2	Air	$(\%)^d$	$(nm)^e$	n°	Δn°
F-PHI-a	375	90	420	390	455	425	58	315	1.627	0.0073
F-aTP10	410	69	455	410	505	440	66	331	1.676	0.0088
F-aTP 30	417	57	455	410	505	445	72	331	1.722	0.0101
F-aTP 50	429	48	475	440	545	505	80	338	1.807	0.0132

Table S3. Thermal and Optical Properties of F-PHI-a Hybrid films

^{*a*} Glass transition temperature measured by TMA with a constant applied load of 10 mN at a heating rate of 10 $^{\circ}$ C min⁻¹ by Tension mode.

^b The CTE data was determined over a 50–200 °C range by expansion mode.

^{*c*} Temperature at which 5% and 10% weight loss occurred, respectively, recorded by TGA at a heating rate of 20 $^{\circ}$ C/min and a gas flow rate of 30 cm³/min.

^d Residual weight percentages at 800 °C under nitrogen flow.

 e The cutoff wavelength (λ_0) from the UV-vis transmission spectra of polymer films (thickness ~15 μm).

^f Refractive index at 633 nm by ellipsometer.

^{*g*} The in-plane/out-of-plane birefringence (Δn) was calculated as $\Delta n = n_{\text{TE}} - n_{\text{TM}}$ were measured using a prism coupler.

	Thermal Properties							Optical Properties		
Index	T_{g}	CTE	$T_{\rm d}^{5}$ ($T_{\rm d}^{5} (^{\rm o}{\rm C})^{c}$		$(^{\circ}C)^{c}$	$R_{ m w800}$	λ_0	f	s g
	$(^{\circ}C)^{a}$	$(\text{ppm/K})^b$	N_2	Air	N_2	Air	$(\%)^d$	$(nm)^e$	n°	Δn°
3S-PHI-a	317	70	370	375	390	400	52	347	1.703	0.0173
3S-aTP10	361	64	420	400	460	440	63	352	1.725	0.0190
3S-aTP 30	373	55	420	415	465	450	74	357	1.776	0.0215
3S-aTP 50	385	42	430	425	500	470	79	362	1.844	0.0233

Table S4. Thermal and Optical Properties of 3S-PHI-a Hybrid films

^{*a*} Glass transition temperature measured by TMA with a constant applied load of 10 mN at a heating rate of 10 $^{\circ}$ C min⁻¹ by Tension mode.

^b The CTE data was determined over a 50–200 °C range by expansion mode.

^{*c*} Temperature at which 5% and 10% weight loss occurred, respectively, recorded by TGA at a heating rate of 20 $^{\circ}$ C/min and a gas flow rate of 30 cm³/min.

^d Residual weight percentages at 800 °C under nitrogen flow.

 e The cutoff wavelength (λ_0) from the UV-vis transmission spectra of polymer films (thickness ~15 μm).

^{*f*} Refractive index at 633 nm by ellipsometer.

^{*g*} The in-plane/out-of-plane birefringence (Δn) was calculated as $\Delta n = n_{\text{TE}} - n_{\text{TM}}$ were measured using a prism coupler.