Supporting Information

Solid state structure and solution phase self-assembly of clicked mannosylated diketopiperazines Apurba Kr. Barman^[a] and Sandeep Verma^{[a],[b]*}

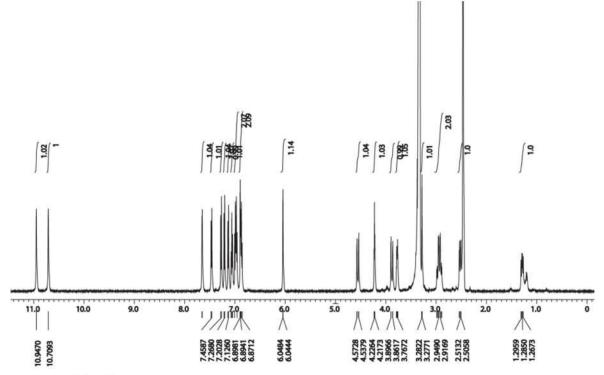
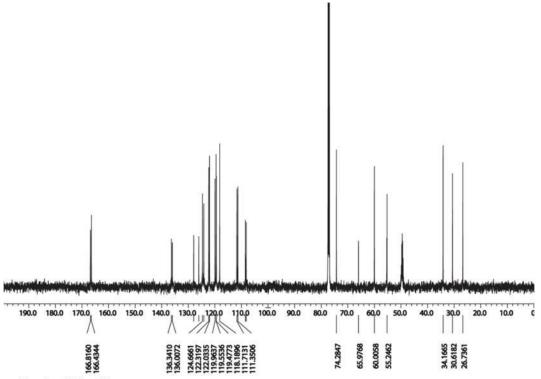
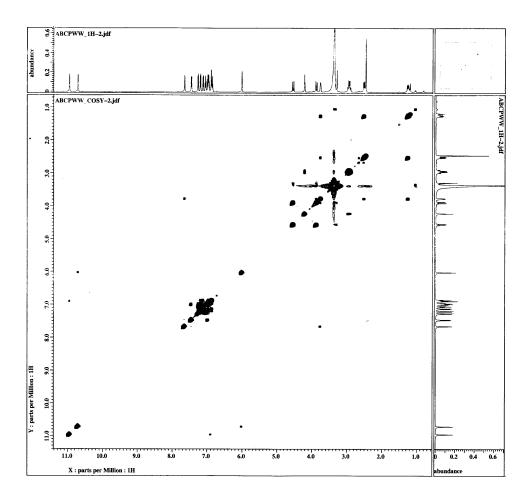

 [a] Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-298916, (UP), India. Tel: +91-512-2597643Fax: +91-512-2597436
[b] DST Unit of Excellence in Soft Nanofabrication, Indian Institute of Technology Kanpur E-mail: sverma@iitk.ac.in

Table of contents:

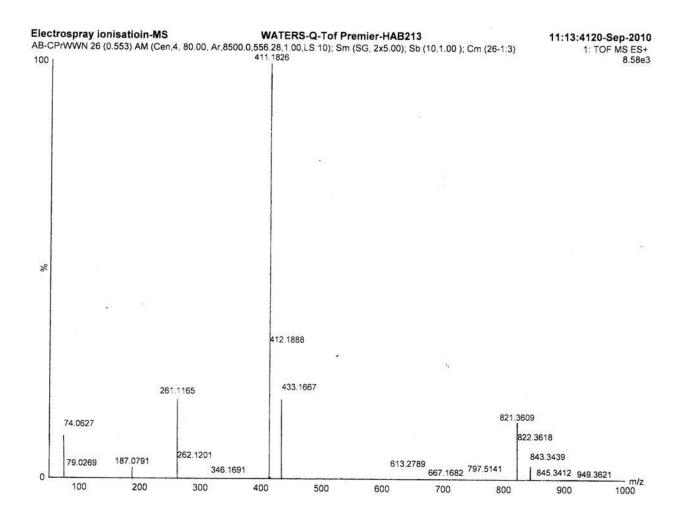
1. ¹ H NMR and of 6a in DMSO- d_6	S 2
2. ¹³ C NMR spectra of 6a	S 3
3. ¹ H- ¹ H COSY NMR spectra of 6a	S4
2. ESI-HRMS of 6a	S 5
3. ¹ H and ¹³ C NMR spectra of 6b	S 6
4. ESI-HRMS of 6b	S 7
5. ¹ H and ¹³ C NMR spectra of $7a$	S 8
6. ESI-HRMS of 7a	S 9
7. ¹ H and ¹³ C NMR spectra of 7b	S 10
8. ESI-HRMS of 7b	S 11
9. ¹ H and ¹³ C NMR spectra of 8a	S 12
10. ESI-HRMS of 8a	S 13
11. ¹ H and ¹³ C NMR spectra of 8b	S14
12. ESI-HRMS of 8a	S15
13. ¹ H and ¹³ C NMR spectra of 10	S 16
14. ESI-HRMS of 10	S17
15. Figure S1: ¹ H NMR of 6a and 8a in varying amounts of water	S18
16. Figure S2: SEM images of 8b and 10	S19


17. X-ray structures of 6a and 8a	S19
18. Table S1: Crystal structure refinement parameters for 6a and 8a	S20
19. Table S2: H-bonding in 6a and 8a	S21

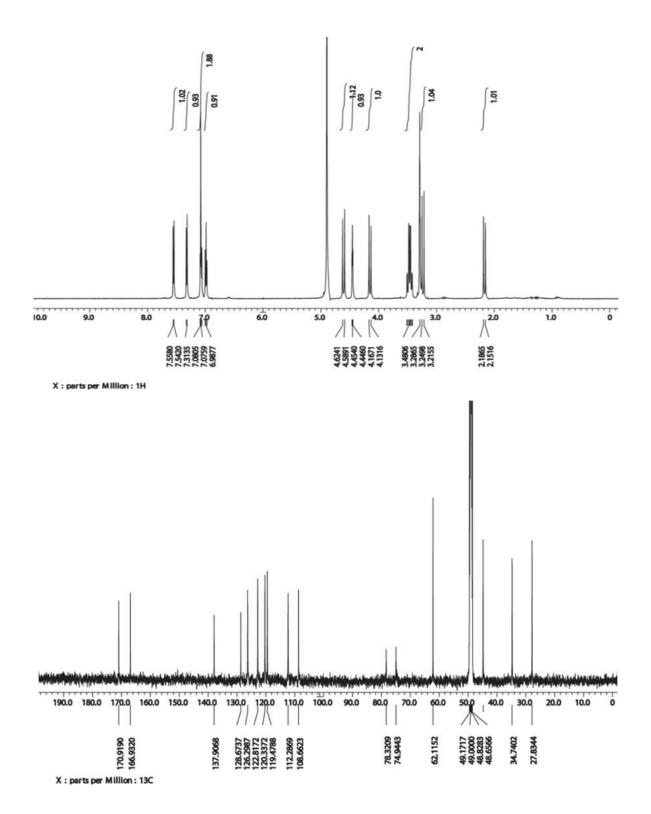
¹H NMR spectra of **6a** (DMSO-*d*₆):

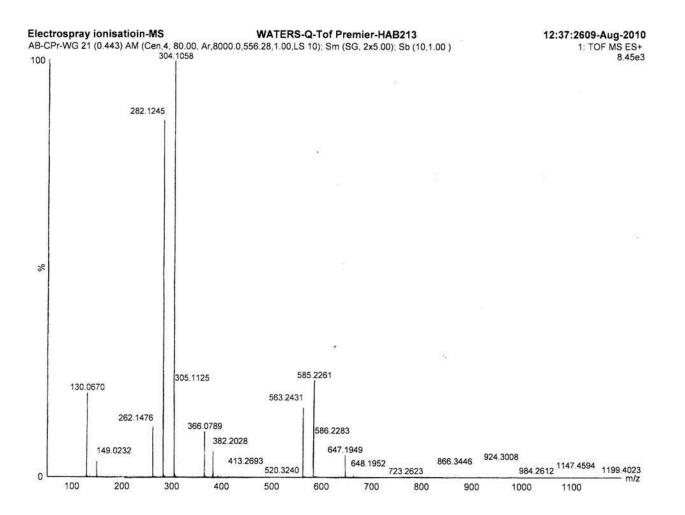

X : parts per Million : 1H

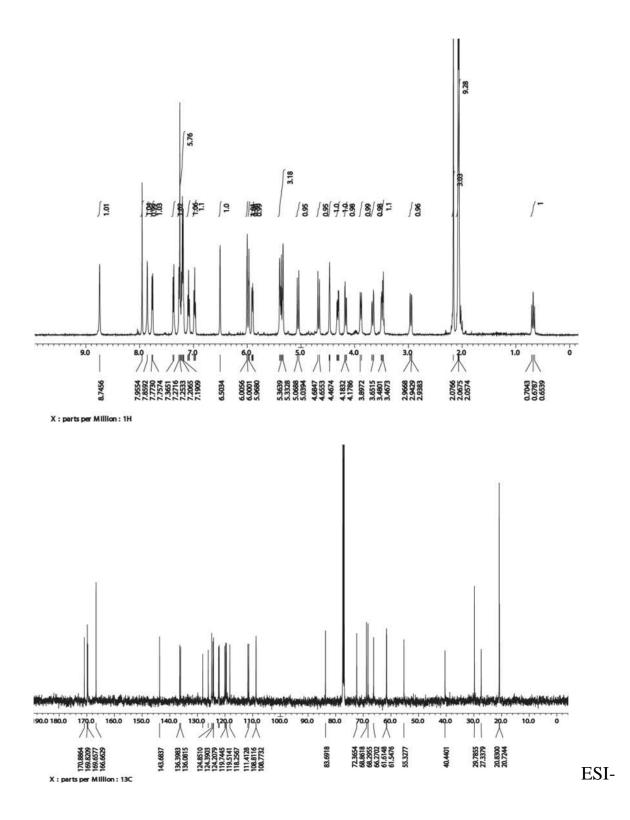
¹³C NMR spectra of **6a**:

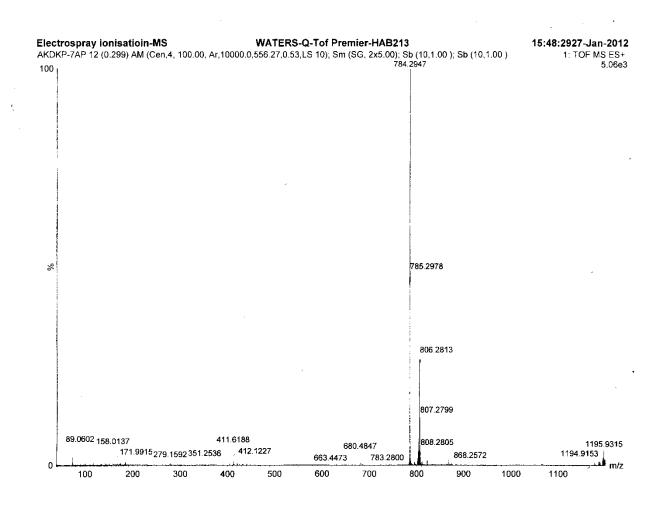


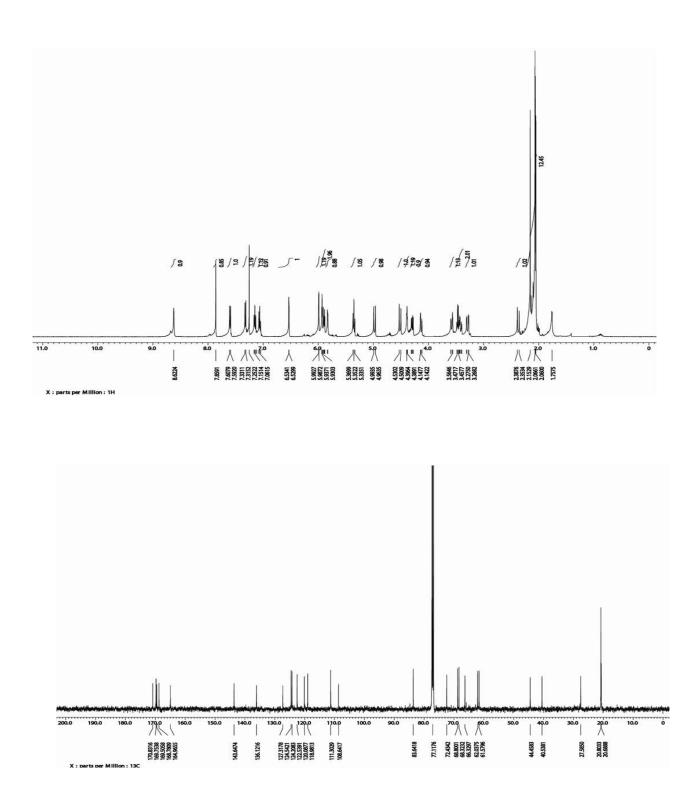
X : parts per Million : 13C

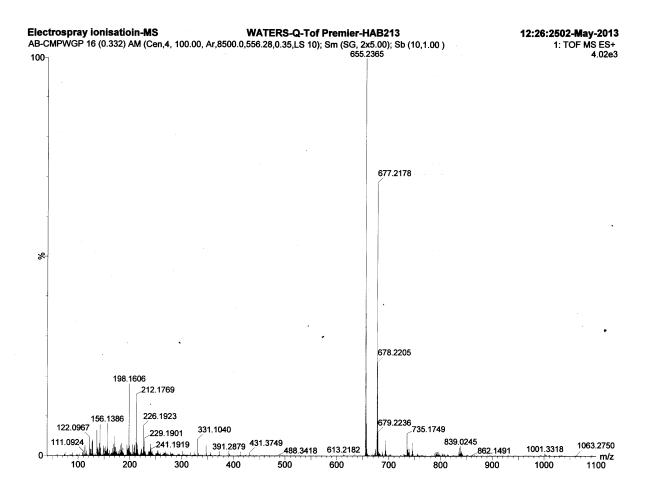

¹H-¹H COSY NMR spectra of **6a** (DMSO- d_6)

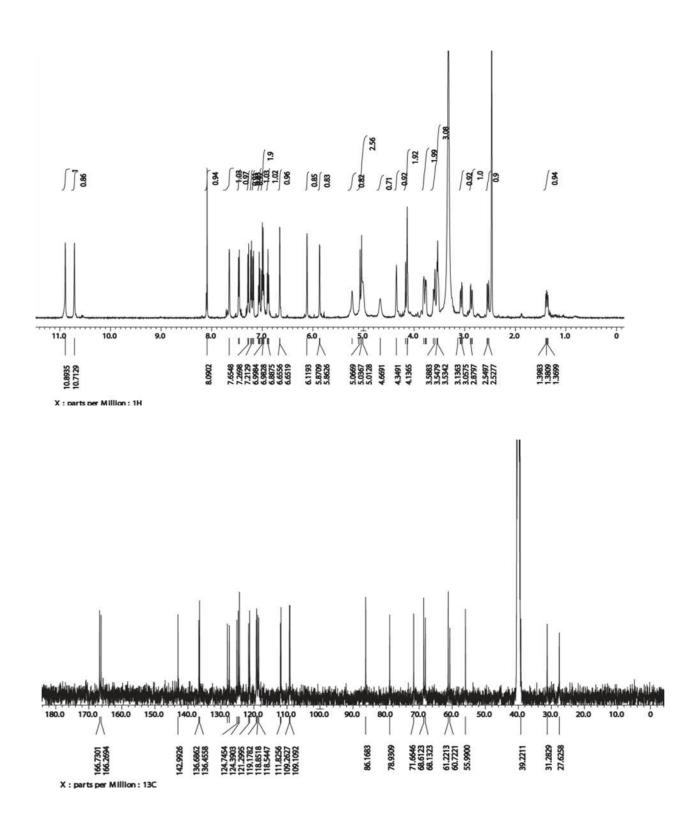

ESI-HRMS of 6a:


¹H and ¹³C NMR spectra of **6b**:

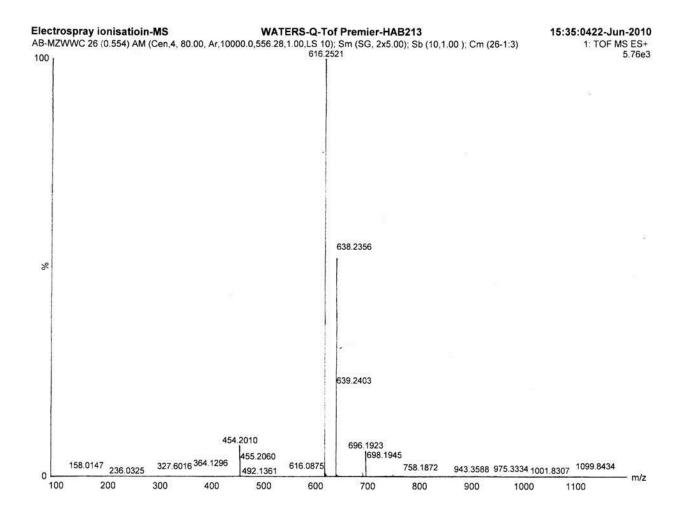

ESI-HRMS of 6b:


¹H and ¹³C NMR spectra of 7a:

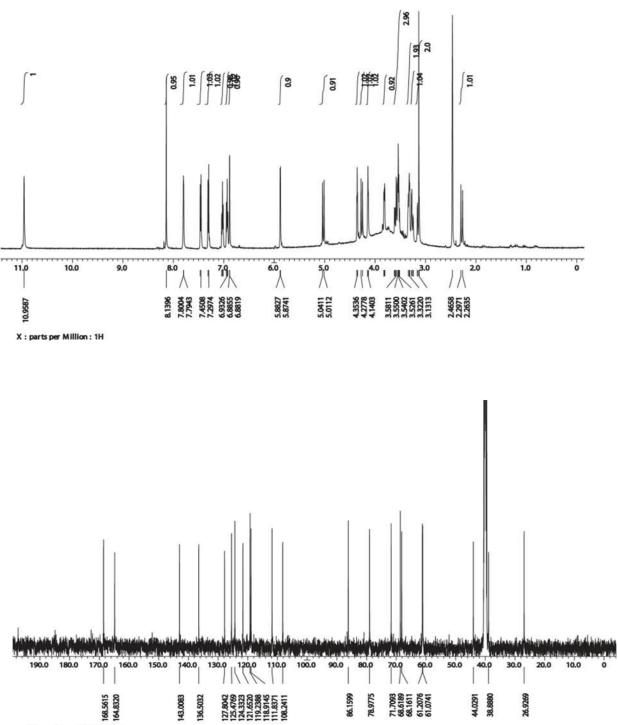

ESI-HRMS of 7a:


¹H and ¹³C NMR spectra of **7b**:

ESI-HRMS of 7b:

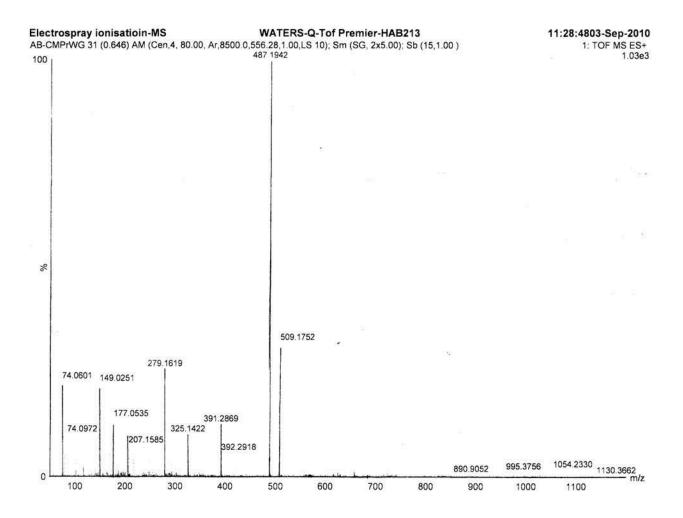


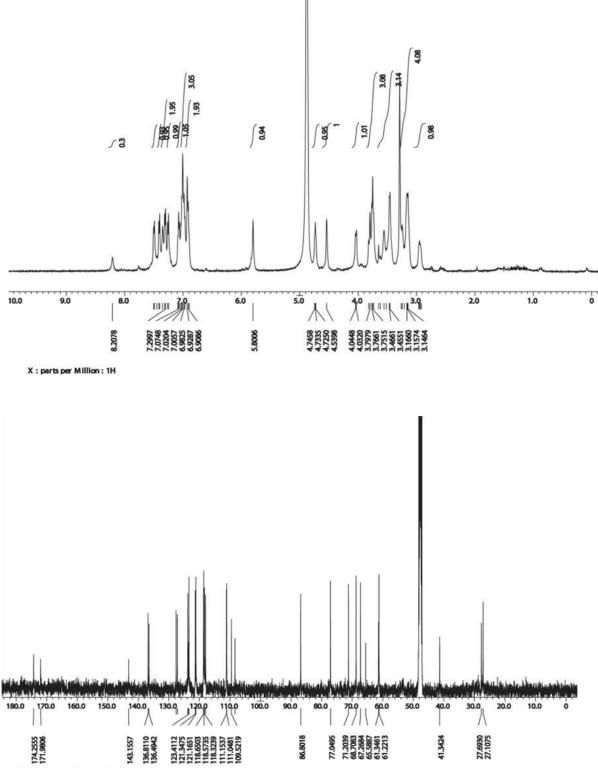
¹H and ¹³C NMR spectra of 8a:



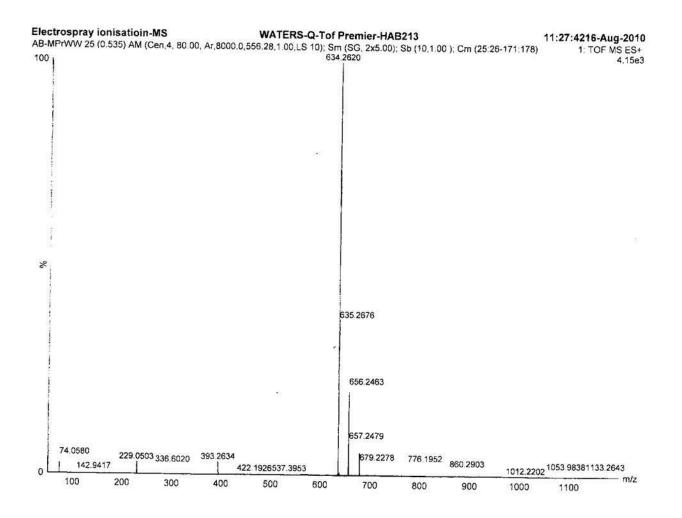
S12

ESI-HRMS of 8a:




¹H and ¹³C NMR spectra of **8b**:

X : parts per Million : 13C


ESI-HRMS of 8b:

X : parts per Million : 13C

ESI-HRMS of 10:

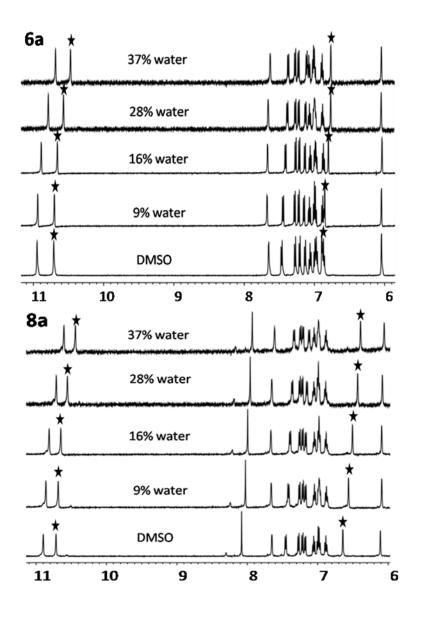


Figure S1: ¹H NMR of **6a** and **8a** in varying amounts of water (aromatic region). Concentration of **6a** and **8a** was 2.0×10^{-2} M.

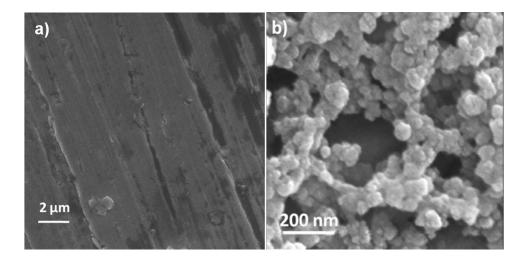
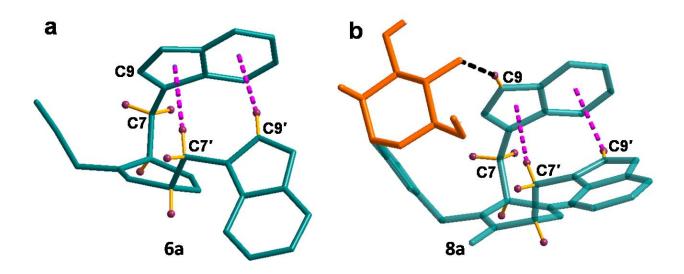



Figure S2: SEM images of a) 8b & b) 10 in 50% aqueous methanol (2 mM) after 24 h ageing.

Figure S3: Crystal structures of a) **6a** and b) **8a** showing relationship of $-CH_2 \beta$ hydrogens of Trp with vicinal hydrogens (-CH α hydrogens). Trans relationship could be seen for C7'H engaged in CH- π bond with the respective vicinal hydrogens.

S	2	0
-	~	0

Identification code	Compound 8a	Compound 6a
Empirical formula	$C_{32}H_{33}N_7O_9$	$C_{25}H_{22}N_4O_2$
Mr	659.65	410.47
crystal system	orthorhombic	tetragonal
space group	P 21 21 21	P 43
a/A	8.505 (2)	19.7959(19)
b/A	8.030(5)	19.7959(19)
c/A	24.601(5)	11.155(2)
$\alpha/^{\circ}$	90.000	90
$\beta/^{\circ}$	90.000	90
$\gamma/^{\circ}$	90.000	90
Volume/ A ³	2957.9	4371.4(11)
Ζ	4	8
$Dx / Mg m^{-3}$	1.481	1.247
<i>F</i> (000)	1384	1728
$\mu/ \text{ mm}^{-1}$	1.481	0.081
θ range for data collection/ °	2.19 - 28.36	2.30 - 26.00
Limiting indices	$\begin{array}{c} -10 \rightarrow h \rightarrow 11, \\ -18 \rightarrow k \rightarrow 10, \\ -32 \rightarrow l \rightarrow 32 \end{array}$	$\begin{array}{c} -24 \rightarrow h \rightarrow 23, \\ -24 \rightarrow k \rightarrow 21, \\ -13 \rightarrow l \rightarrow 13 \end{array}$
Reflections collected	19274	24249
unique reflections	7246	8484
R(int)	0.0521	0.0652
Completeness to θ	28.36, 98.9	26.00, 99.2
$T_{\rm max}$ / $T_{\rm min}$	0.9912/0.9782	0.9903/0.9839
Data / restraints / parameters	7246 / 1 / 441	8484 / 1 / 559
Goodness-of-fit on F^2	1.086	1.001
<i>R</i> 1 and <i>R</i> 2 [$I > 2\sigma(I)$] <i>R</i> 1 and <i>R</i> 2 (all data) Absolute structure parameter	$\begin{array}{c} 0.0638, 0.1573 \\ 0.0891, 0.1822 \\ -1.5(14) \end{array}$	$\begin{array}{c} 0.0553, 0.1149 \\ 0.0745, 0.1237 \\ 0.2(11) \end{array}$
Largest diff. peak and hole/e.A ⁻³	0.537 and -0.534	0.217 and -0.191
CCDC No.	864568	864569

Table S1. Crystal structure refinement parameters for 6a and 8a.

D—HAª	HA	DA	D—HA	
Compound 8a				
O4H4'O5 O4H4'N8" O5H5'O6 O5H5O1" O6H6'O5 O6H6'O1W" N8H8'O4" N8'H8'O4" C3H3O5" C7H7AO1A" C12H12O1A" C13'H13'N8" C19H19O C26H26O1A C27H27N20	$\begin{array}{c} 2.43\\ 2.10\\ 2.54\\ 2.09\\ 2.56\\ 2.57\\ 1.96\\ 2.17(4)\\ 2.03\\ 2.58\\ 2.50\\ 2.41\\ 2.62\\ 2.35\\ 2.54\\ 2.54\end{array}$	$\begin{array}{c} 2.754(3)\\ 2.887(4)\\ 2.867(4)\\ 2.869(3)\\ 2.867(4)\\ 2.980(4)\\ 2.970(4)\\ 2.971(4)\\ 2.911(4)\\ 2.887(4)\\ 3.355(4)\\ 3.367(7)\\ 3.178(8)\\ 3.516(5)\\ 2.902(4)\\ 3.430(8)\\ 2.897(4) \end{array}$	$105 \\ 160 \\ 105 \\ 159 \\ 104 \\ 112 \\ 169 \\ 157(4) \\ 174 \\ 136 \\ 148 \\ 140 \\ 161 \\ 118 \\ 150 \\ 101 \\ 101$	
Compound 6a				
N4H4N8B ^{vii} N4AH4AO2 ^{viii} N8H8O1A N8AH8AO1 C17H17AO1A ^{tx} C17AH17DO2 ^x	2.41 2.44 1.99 2.00 2.24 2.29	3.061(3) 3.282(3) 2.837(3) 2.812(3) 3.002(4) 3.198(4)	133 165 167 158 135 156	

Table S2. H-bonding of 6a and 8a in crystal structure.

^aSymmetry of A: (i)1/2-x,1-y,-1/2+z (ii)1- x,1/2+y,1/2-z (iii) -1+x,y,z (iv) 1/2-x,1-y,1/2+z(v) 1-x,-1/2+y,1/2-z (vi)-1/2+x,1/2-y,1-z (vii) y,-x,1/4+z (viii) -y,x,-1/4+z (ix) 1-y,x,-1/4+z (x) y,1-x,-3/4+z, where A= acceptor and D=donor