Supporting information for "<u>Catalyst-Free Stereoselective</u> <u>Cyclopropanation of Electron Deficient Alkenes with Ethyl</u> <u>Diazoacetate</u>"

Ram Awatar Maurya,*^a Jeevak Sopanrao Kapure,^{a,b} Praveen Reddy Adiyala,^a Srikanth P. S.,^a D. Chandrasekhar,^a Ahmed Kamal*^{a,b}

^aDivision of Medicinal Chemistry and Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India-500007

^bDepartment of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Hyderabad-500037

Email: ramaurya@iict.res.in (R. A. Maurya); ahmedkamal@iict.res.in (A. Kamal)

General: Unless otherwise mentioned all reactions were performed in open atmosphere in LR grade solvents. All the reagents and chemicals were purchased from Sigma-Aldrich Company and used without further any purification. Analytical thin layer chromatography was performed with E. Merck silica gel 60 F aluminium plates and visualized under UV 254 nm. ¹H NMR and ¹³C NMR spectra were measured with Brucker 300, 500, and 600 MHz instruments. All the compounds were fully characterized by ¹H NMR, ¹³C NMR, Mass-Spectroscopy, IR, and HRMS analysis.

General experimental procedure for cyclopropanation of arylidene-malononitrile or arylideneethyl cyanoacetate with EDA: In a 10 ml round bottom flask, the doubly activated alkene (1 mmol), ethyl diazoacetate (1.2 mmol), and acetonitrile (5 ml) were taken and the reaction mixture was stirred at room temperature until complete consumption of the alkene (TLC). Next the reaction mixture was concentrated to yield crude which was purified by silica-gel column chromatography using ethyl acetate-hexane (1:20) as eluent yielding the desired cyclopropananes.

General experimental procedure for one-pot, two-step, three-component reaction of aldehyde, malononitrile/ethyl cyanoacetate, and ethyl diazoacetate: In a 10 ml round bottom flask, aldehyde (1 mmol), malononitrile/ethyl cyanoacetate (1 mmol), acetonitrile (5 ml), and basic alumina (20 mg) was taken and the reaction mixture was stirred at ambient temperature until complete consumption of the aldehyde (TLC). Next ethyl diazoacetate (1.2 mmol) was added to it and the reaction mixture was further stirred at room temperature until complete consumption of the alkene (TLC). The desired cyclopropanes were further obtained as described above.

Characterization data for the synthesized cyclopropanes:

Ethyl 3-(4-bromophenyl)-2,2-dicyanocyclopropanecarboxylate (3a):

White solid; MP: 97 ⁰C; ESIMS (*m*/*z*): 351 (M+CH₃OH+H); IR (KBr, cm⁻¹): 3068, 2981, 2924, 2250, 1735, 1442, 1337, 1252; ¹H NMR (CDCl₃, 600MHz) δ : 1.38 (t, *J* = 7.2 Hz, 3H), 3.09 (d, *J* = 7.9 Hz, 1H), 3.63 (d, *J* = 7.9 Hz, 1H), 4.36 (q, *J* = 7.2 Hz, 2H), 7.18 (d, *J* = 8.7 Hz, 2H), 7.58 (d, *J* = 8.7 Hz, 2H); ¹³C NMR (CDCl₃, 150 Hz) δ : 13.78, 14.03, 33.52, 37.67, 63.46, 111.27, 111.46, 124.24, 127.98, 129.83, 132.52, 164.57; HRMS calculated for C₁₅H₁₆BrN₂O₃: 351.0344; found: 351.0340.

Ethyl 2,2-dicyano-3-(4-cyanophenyl)cyclopropanecarboxylate (3b):

White solid; MP: 168 ^oC; ESIMS (*m*/*z*): 298 (M+CH₃OH+H); IR (KBr, cm⁻¹): 3071, 3025, 2985, 2926, 2253, 2226, 1746, 1443, 1338, 1252, 1201, 1029; ¹H NMR (CDCl₃, 600 MHz) δ : 1.38 (t, *J* = 7.2 Hz, 3H), 3.16 (d, *J* = 7.9 Hz, 1H), 3.72 (d, *J* = 7.9 Hz, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 7.45 (d, *J* = 7.9 Hz, 2H), 7.56 (d, *J* = 7.9 Hz, 2H); ¹³C NMR (CDCl₃, 150 MHz) δ : 13.92, 13.99, 33.50, 37.39, 63.62, 110.89, 111.15, 113.95, 117.62, 129.19, 132.93, 134.09, 164.25; HRMS calculated for C₁₆H₁₆N₃O₃: 298.1191; found: 298.1185.

White solid; MP: 145 ^oC; ESIMS (m/z): 318 (M+CH₃OH+H); IR (KBr, cm⁻¹): 3074, 2983, 2921, 2252, 1736, 1519, 1351; ¹H NMR (CDCl₃, 500 MHz) δ : 1.39 (t, J = 7.2 Hz, 3H), 3.21 (d, J = 8.1 Hz, 1H), 3.77 (d, J = 8.1 Hz, 1H), 4.39 (q, J = 7.2 Hz, 2H), 7.53 (d, J = 8.7 Hz, 2H), 8.31 (d, J = 8.7 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ : 13.99, 33.57, 37.09, 63.71, 110.84, 111.10, 124.37, 129.52, 135.89, 148.60, 164.25; HRMS calculated for C₁₅H₁₆N₃O₅: 318.1090; found: 318.1080.

Ethyl 2,2-dicyano-3-(3-nitrophenyl)cyclopropanecarboxylate (3d):

White solid; MP: 150 0 C; ESIMS (*m*/*z*): 318 (M+CH₃OH+H); IR (KBr, cm⁻¹): 3079, 3046, 2921, 2870, 2256, 1736, 1529, 1349, 1251, 1206; ¹H NMR (CDCl₃, 500 MHz) δ : 1.40 (t, *J* = 7.2 Hz, 3H), 3.22 (d, *J* = 8.1 Hz, 1H), 3.79 (d, *J* = 8.1 Hz, 1H), 4.39 (q, *J* = 7.2 Hz, 2H), 7.66-7.71 (m, 2H), 8.20 (s, 1H), 8.31-8.33 (d, *J* = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 150 Hz) δ : 13.93, 14.05, 33.49, 37.07, 63.77, 110.84, 111.16, 123.42, 124.83, 130.60, 131.19, 134.42, 148.53, 164.25; HRMS calculated for C₁₅H₁₆N₃O₅: 318.1090; found: 318.1081.

Ethyl 3-(4-bromo-2-fluorophenyl)-2,2-dicyanocyclopropanecarboxylate (3e):

White solid; MP: 104 0 C; ESIMS (*m*/*z*): 369 (M+CH₃OH+H); IR (KBr, cm⁻¹): 3073, 3028, 2997, 2249, 1745, 1490, 1408, 1270, 1028; ¹H NMR (CDCl₃, 500 MHz) δ : 1.38 (t, *J* = 7.2 Hz, 3H), 3.11 (d, *J* = 8.1 Hz, 1H), 3.66 (d, *J* = 8.1 Hz, 1H), 4.36 (q, *J* = 7.2 Hz, 2H), 7.06-7.08 (m, 1H), 7.37-7.40 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.05, 14.00, 32.32, 33.18, 63.55, 110.91, 111.36, 116.21, 119.98, 120.17, 124.66, 124.73, 128.20, 128.23, 129.87, 129.90, 160.48, 162.51, 164.33; HRMS calculated for C₁₅H₁₅BrFN₂O₃: 369.0250; found: 369.0245.

Ethyl 3-(biphenyl-4-yl)-2,2-dicyanocyclopropanecarboxylate (3f):

White solid; MP: 119 0 C; ESIMS (*m*/*z*): 349 (M+CH₃OH+H); IR (KBr, cm⁻¹): 3029, 2978, 2924, 2853, 2251, 1740, 1431, 1329, 1253, 1197; ¹H NMR (CDCl₃, 500 MHz) δ : 1.39 (t, *J* = 7.2 Hz, 3H), 3.17 (d, *J* = 8.2 Hz, 1H), 3.72 (d, *J* = 8.2 Hz, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 7.37-7.40 (m, 3H), 7.45-

7.48 (m, 2H), 7.58 (d, J = 8.3Hz, 2H), 7.65 (d, J = 8.3Hz, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.71, 13.82, 33.34, 37.99, 63.13, 111.29, 111.45, 126.84, 127.64, 128.39, 128.65, 139.46, 142.54, 164.61; HRMS calculated for C₂₁H₂₁N₂O₃: 349.1552; found: 349.1548.

Ethyl 2,2-dicyano-3-(3,4,5-trimethoxyphenyl)cyclopropanecarboxylate (3g):

Oily compound; ESIMS (*m*/*z*): 353 (M+Na); IR (KBr, cm⁻¹): 2939, 2841, 2250, 1738, 1591, 1509, 1462, 1244, 1127; ¹H NMR (CDCl₃, 500 MHz) δ : 1.38 (t, *J* = 7.2 Hz, 3H), 3.09 (d, *J* = 8.1 Hz, 1H), 3.63 (d, *J* = 8.1 Hz, 1H), 3.86 (s, 3H), 3.89 (s, 6H), 4.38 (q, *J* = 7.2 Hz, 2H), 6.49 (s, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.85, 14.03, 33.83, 38.74, 56.28, 60.88, 63.38, 105.30, 111.55, 111.78, 124.07, 139.18, 153.65, 164.76; HRMS calculated for C₁₇H₁₈N₂NaO₅: 353.1113; found: 353.1110.

Ethyl 2,2-dicyano-3-(3,5-dimethoxyphenyl)cyclopropanecarboxylate (3h):

Oily compound; ESIMS (*m/z*): 347 (M+HCOOH+H); IR (KBr, cm⁻¹): 3019, 2922, 2850, 2250, 1739, 1599, 1461, 1426; ¹H NMR (CDCl₃, 500 MHz) δ : 1.37 (t, *J* = 7.2 Hz, 3H), 3.09 (d, *J* = 8.1 Hz, 1H), 3.61 (d, *J* = 8.1 Hz, 1H), 3.81 (s, 6H), 4.36 (q, *J* = 7.2 Hz, 2H), 6.42 (s, 2H), 6.48 (s, 1H); ¹³C NMR (CDCl₃, 125 Hz) δ : 13.76, 14.05, 33.54, 38.44, 55.49, 55.63, 63.35, 101.43, 105.71, 106.33, 111.58,

112.23, 136.09, 161.06, 161.27, 164.83; HRMS calculated for $C_{17}H_{19}N_2O_6$: 347.1243; found: 347.1239.

White solid; MP: 129 0 C; ESIMS (*m*/*z*): 331 (M+H₂O+Na); IR (KBr, cm⁻¹): 3062, 3025, 2988, 2254, 1739, 1426, 1318, 1245, 1176; ¹H NMR (CDCl₃, 500 MHz) δ : 1.40 (t, *J* = 7.2 Hz, 3H), 3.28 (d, *J* = 8.1 Hz, 1H), 3.85 (d, *J* = 8.1 Hz, 1H), 4.38 (q, *J* = 7.2 Hz, 2H), 7.39 (dd, *J* = 8.5 & 1.8 Hz, 1H), 7.54-7.57 (m, 2H), 7.76 (s, 1H), 7.84-7.88 (m, 2H), 7.92 (d, *J* = 8.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.95, 14.07, 33.61, 38.66, 63.39, 111.60, 111.71, 124.98, 126.20, 127.09, 127.31, 127.84, 129.39, 132.93, 133.57, 164.89; HRMS calculated for C₁₈H₁₆N₂NaO₃: 331.1058; found: 331.1053.

Ethyl 2,2-dicyano-3-(naphthalen-1-yl)cyclopropanecarboxylate (3j):

Brown solid; MP: 139 0 C; ESIMS (*m*/*z*): 331 (M+H₂O+Na); IR (KBr, cm⁻¹): 3050, 3009, 2249, 1729, 1431, 1394, 1321, 1254; ¹H NMR (CDCl₃, 500 MHz) δ : 1.41 (t, *J* = 7.5 Hz, 3H), 3.31 (d, *J* = 8.3 Hz, 1H), 4.09 (d, *J* = 8.3 Hz, 1H), 4.39 (q, *J* = 7.5 Hz, 2H), 7.34 (d, *J* = 6.8 Hz, 1H), 7.44-7.50 (m, 1H), 7.60-7.65 (m, 1H), 7.70-7.75 (m, 1H), 7.94 (d, J = 8.3 Hz, 2H), 8.05 (d, *J* = 8.3 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ : 13.69, 14.07, 33.64, 36.98, 63.40, 111.52, 111.77, 122.27, 124.92, 125.40,

125.85, 126.87, 127.93, 129.21, 130.78, 131.93, 133.67, 164.97; HRMS calculated for $C_{18}H_{16}N_2NaO_3$: 331.1058; found: 331.1056.

Ethyl 2,2-dicyano-3-(5-nitrothiophen-2-yl)cyclopropanecarboxylate (3k):

Brown solid; MP: 116 0 C; ESIMS (*m/z*): 324 (M+CH₃OH+H); IR (KBr, cm⁻¹): 3101, 3037, 2252, 1724, 1507, 1418, 1344; ¹H NMR (CDCl₃, 500 MHz) δ : 1.39 (t, *J* = 7.2 Hz, 3H), 3.13 (d, *J* = 7.8 Hz, 1H), 3.78 (d, *J* = 7.8 Hz, 1H), 4.39 (q, *J* = 7.2 Hz, 2H), 7.08 (d, *J* = 4.2 Hz, 1H), 7.87 (d, *J* = 4.2 Hz, 1H); ¹³C NMR (CDCl₃, 125 Hz) δ : 14.01, 14.90, 32.81, 34.77, 64.01, 110.19, 110.78, 127.76, 128.37, 138.41, 152.65, 163.54; HRMS calculated for C₁₃H₁₄N₃O₅S: 324.0654; found: 324.0649.

Diethyl 1-cyano-3-(4-nitrophenyl)cyclopropane-1,2-dicarboxylate (3l [major diastereomer; where nitrile is syn to aryl] & **3l'**[minor diastereomer; where nitrile is anti to aryl]):

The mixture of **3l** and **3l'** was obtained in 10:1 ratio as semi-solid; ESIMS (m/z): 355 (M+Na); IR (KBr, cm⁻¹): 3082, 2986, 2937, 2247, 1741, 1603, 1524, 1349; ¹H NMR data assigned for **3l**: (CDCl₃, 500 MHz) δ : 1.30 (t, J = 7.2 Hz, 3H), 1.36 (t, J = 7.0 Hz, 3H), 3.15 (d, J = 8.4 Hz, 1H), 3.73 (d, J = 8.4 Hz, 1H), 4.23-4.37 (m, 4H), 7.50 (d, J = 8.7 Hz, 2H), 8.27 (d, J = 8.7 Hz, 2H); ¹H NMR data

assigned for **31**': (CDCl₃, 500 MHz) δ : 1.30 (t, J = 7.2 Hz, 3H), 1.36 (t, J = 7.0 Hz, 3H), 3.07 (d, J = 10.2 Hz, 1H), 3.48 (d, J = 10.2 Hz, 1H), 4.23-4.37 (m, 4H), 7.38 (d, J = 8.7 Hz, 2H), 8.27 (d, J = 8.7 Hz, 2H); ¹³C NMR for the mixture of **31** and **31**'(CDCl₃, 125 Hz) δ : 13.66, 13.89, 13.94, 28.38, 29.59, 30.58, 31.81, 35.26, 35.66, 61.77, 62.50, 62.86, 63.84, 109.88, 114.36, 123.46, 124.01, 129.28, 130.34, 138.71, 144.95, 147.98, 148.57, 160.98, 163.22, 163.56, 164.59; HRMS calculated for C₁₆H₁₆N₂NaO₆: 355.0906; found: 355.0909.

Diethyl 1-cyano-3-(4-cyanophenyl)cyclopropane-1,2-dicarboxylate (**3m** [major diastereomer; where nitrile is syn to aryl] **& 3m**'[minor diastereomer; where nitrile is anti to aryl]):

The mixture of **3m** and **3m'** was obtained in 10:1 ratio as semi-solid; ESIMS (*m/z*): 335 (M+Na); IR (KBr, cm⁻¹): 2986, 2231, 1739, 1607, 1270; ¹H NMR data assigned for **3m**: (CDCl₃, 500 MHz) δ : 1.30 (t, *J* = 7.2 Hz, 3H), 1.37 (t, *J* = 7.2 Hz, 3H), 3.16 (d, *J* = 8.4 Hz, 1H), 3.68 (d, *J* = 8.4 Hz, 1H), 4.22-4.36 (m, 4H), 7.45 (d, *J* = 8.3 Hz, 2H), 7.71 (d, *J* = 8.3 Hz, 2H); ¹H NMR data assigned for **3m'**: (CDCl₃, 500 MHz) δ : 1.30 (t, *J* = 7.2 Hz, 3H), 1.36 (t, *J* = 7.0 Hz, 3H), 3.05 (d, *J* = 10.3 Hz, 1H), 3.45 (d, *J* = 10.3 Hz, 1H), 4.23-4.37 (m, 4H), 7.32 (d, *J* = 8.7 Hz, 2H), 7.71 (d, *J* = 8.7 Hz, 2H); ¹³C NMR for the mixture of **3m** and **3m'**(CDCl₃, 125 Hz) δ : 13.40, 13.66, 13.73, 25.82, 28.14, 33.99, 35.94, 35.26, 35.35, 61.46, 62.18, 62.57, 63.52, 109.31, 110.62, 117.60, 117.84, 127.35, 128.91, 131.72, 132.33, 135.49, 136.67, 141.53, 143.00, 160.86, 163.14, 163.72, 164.49; HRMS calculated for C₁₇H₁₆N₂NaO₄: 335.1008; found: 335.1008.

White solid; MP: 136 0 C; ESIMS (*m*/*z*): 326 (M+H₂O+Na); IR (KBr, cm⁻¹): 3080, 2987, 2937, 2254, 1734, 1524, 1342, 1243, 1187; ¹H NMR (CDCl₃, 300MHz) δ : 1.38 (t, *J* = 7.2 Hz, 3H), 3.12 (d, *J* = 8.3 Hz, 1H), 4.07 (d, *J* = 8.3 Hz, 1H), 4.37 (q, *J* = 7.2 Hz, 2H), 7.43 (d, *J* = 7.6 Hz, 1H), 7.66-7.80 (m, 2H), 8.31 (dd, *J* = 8.1 & 1.3 Hz, 1H); ¹³C NMR (CDCl₃, 75 MHz) δ : 14.08, 14.23, 34.68, 36.80, 63.63, 111.10, 111.66, 125.53, 126.38, 130.83, 131.35, 134.67, 148.66, 164.43; HRMS calculated for C₁₄H₁₃N₃NaO₅: 326.0752; found: 326.0747.

Ethyl 3-tert-butyl-2,2-dicyanocyclopropanecarboxylate (3o):

Oily compound; ESIMS (*m*/*z*): 239 (M+H₂O+H); IR (KBr, cm⁻¹): 2967, 2249, 1740, 1474, 1243; ¹H NMR (CDCl₃, 500MHz) δ : 1.16 (s, 9H), 1.35 (t, *J* = 7.2 Hz, 3H), 2.30 (d, *J* = 8.8 Hz, 1H), 2.67 (d, *J* = 8.8 Hz, 1H), 4.30 (q, *J* = 7.2 Hz, 2H); ¹³C NMR (CDCl₃, 75 MHz) δ : 8.77, 13.96, 27.91, 30.43, 32.54, 45.20, 62.97, 112.23, 112.81, 165.39; HRMS calculated for C₁₂H₁₉N₂O₃: 239.1395; found: 239.1390.

Diethyl 3-tert-butyl-1-cyanocyclopropane-1,2-dicarboxylate (3p):

White solid; MP 47 0 C; ESIMS (*m*/*z*): 290 (M +Na); IR (KBr, cm⁻¹): 2967, 2243, 1739, 1470, 1369, 1290; ¹H NMR (CDCl₃, 300MHz) δ : 1.14 (s, 9H), 1.24-1.35 (m, 6H), 2.32 (d, *J* = 9.1 Hz, 1H), 2.64 (d, *J* = 9.1 Hz, 1H), 4.13-4.30 (m, 4H); ¹³C NMR (CDCl₃, 75 MHz) δ : 13.92, 13.96, 22.93, 26.12, 29.95, 34.42, 43.23, 61.84, 63.22, 116.37, 164.72, 166.11; HRMS calculated for C₁₄H₂₁NNaO₄: 290.1368; found: 290.1360.

1H NMR of 3a:

1H NMR of 3c:

1H NMR of 3d:

1H NMR of 3e:

1H NMR of 3f:

13C NMR of 3f:

1H NMR of 3g:

 $\frac{1}{100} 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 0$

13C NMR of 3k:

1H NMR for the mixture of 3I & 3I':

13C NMR for the mixture of 3m & 3m':

1H NMR of 3n:

1H NMR of 3o:

13C NMR of 3o:

1H NMR of 3p:

13C NMR of 3p:

