Photo-Cross-Linkable Polymeric Binder for Silicon Anodes in Lithium Ion Batteries

Yuwon Park,^{*a,b*,§} Sueun Lee,^{*a*,§} Si-Hoon Kim,^{*c*} Bo Yun Jang,^{*d*} Joon Soo Kim,^{*d*} Seung M. Oh,^{*b*} Ju-Young Kim,^{*c*} Nam-Soon Choi,^{*a*} Kyu Tae Lee^{**a*} and Byeong-Su Kim^{**a*}

^a Interdisciplinary School of Green Energy and KIER-UNIST Advanced Center for Energy, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798, South Korea

^b School of Chemical and Biological Engineering, Seoul National University, 1 Gwanangno, Gwanak-gu, Seoul 151-742, South Korea

^c School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), 100 Banyeon-ri, Eonyang-eup, Ulju-gun, Ulsan 689-798, South Korea

^d Korea Institute of Energy Research (KIER), Daejeon 305-343, South Korea

[§] These authors contributed equally to this work.

E-mail: ktlee@unist.ac.kr (K.T. Lee.); bskim19@unist.ac.kr (B.-S. Kim.).

Fig. S1 FT-IR spectra of PAA-BP binder of (a) reversible thermal cross-linking (b) irreversible photo-cross-linking. In Fig. S1a, the peak corresponding to the anhydride at 1760 and 1800 cm⁻¹ indicated by grey region disappeared under humidity condition, resulting in reversible cross-linking. In contrast, no changes were observed in Fig. S1b, indicating the irreversible cross-linking can endure the environment changes. The PAA-BP film was firstly dried at 150 °C for 2 h under vacuum and then placed in a humidity chamber at a relative humidity of 80% for 24 h.

Fig. S2 (a) XRD pattern and (b) TEM images of carbon-coated silicon active-material used in the study.

Fig. S3 Representative load-indentation depth curves of bare and cross-linked PAA-BP measured by nanoindentation.