Supplementary Information

to the article

Polarizability of C₆₀ fullerene dimer and oligomers: The unexpected enhancement and its use for rational design of fullerene-based nanostructures with adjustable properties

Denis Sh. Sabirov

General description

Section A. Accuracy of PBE/3 ζ method applied to C₆₀, C₇₀ and (C₆₀)₂.

Section B. Mean polarizability and its exaltation for $(C_{20})_n$ (n = 1-4) calculated by PBE/3 ζ and RI-PBE0/A1 methods.

Section C. Diagonalized tensors of polarizability calculated by PBE/3 ζ method.

Section D. SI to the article includes also the optimized geometries of all the compounds studied in the work, several output files with Hessians (C_{60} , (C_{60})₂, $C_{60}C_{60}F_{16}$, [$C_{60}(CH_2)_5$]₂, trans 3-(C_{60})₃, trans 2-(C_{60})₃, cyclic (C_{60})₃). Note, Hessian calculations output files also contain <u>non-diagonalized</u> tensors of polarizability. All polarizability values are in a.u. (1 a.u. = 0.148 Å³).

Output files can be open by ChemCraft or QCC Front-End programs.

Section A. Accuracy of PBE/3 ζ method applied to $C_{60},\,C_{70}$ and $(C_{60})_2$

Parameters	C ₆₀ PBE/3z Experimental data		C ₇₀			
T arameters			PBE/3z	Experimental data		
Bond lengths (Å) [†]		5.6 bonds		aa bond		
	1.453	1.453 1.458		1.453–1.463		
		6.6 bonds		<i>ab</i> bond		
	1.399	1.401	1.400	1.381–1.388		
				b c bond		
			1.449	1.449-1.453		
				<i>cc</i> bond		
			1.394	1.376-1.441		
				<i>cd</i> bond		
			1.446	1.432–1.468		
			<i>dd</i> bond			
			1.439	1.425–1.438		
				<i>de</i> bond		
			1.422	1.405–1.423		
			ee bond			
			1.469	1.462-1.538		
IR spectra $(cm^{-1})^{\ddagger}$	526	527	457	457		
	576	576	529	533		
	1179	1183	565	563		
	1432	1429	574	572		
			642	643		
			674	670		
			793	745		
			1131	1130		
			1414	1406		
			1430	1430		
			1460	1463		
Entropy S_{f}° (J K ⁻¹ mol ⁻¹) §	549.1	544.0 (gas)	636.0	614.0 (gas)		

1. The comparison between the calculated and experimental parameters for C_{60} and C_{70}

[†] Experimentally determined bond lengths: for C_{60} – V. I. Sokolov, I. V. Stankevich, Russ. Chem. Rev. 62 (1993), 419; for C_{70} – V. V. Zverev, V. I. Kovalenko, Russ. J. Phys. Chem. A 80 (2001) 99.

^{\ddagger} IR spectra of C₆₀ and C₇₀ are from V. I. Sokolov, I. V. Stankevich, Russ. Chem. Rev. 62 (1993), 419.

[§] Experimental entropies for gas phase have been taken from Standard thermodynamic properties of chemical substances, CRC PRESS LLC, 2000.

2 Comparison between the calculated and experimental parameters for $(C_{\rm 60})_2$

Structural data of $(C_{60})_2$

Parameter	X-ray	PBE/3ζ				
L(C1-C1*)	1,575(7)	1,598				
L(C1-C2)	1,581(7)	1,599				
L(C2-C3)	1,530(8)	1,522				
L(C3-C4)	1,374(7)	1,383				
L(C4-C5)	1,468(8)	1,48				
L(C5-C6)	1,358(9)	1,383				
L(C6-C1)	1,528(7)	1,522				
L(C6-C7)	1,445(8)	1,438				
L(C7-C8)	1,457(9)	1,452				
C2-C1-C6	115,4(5)	115,24				
C2-C1-C9	115,2(4)	115,24				
C6-C1-C9	100,7(4)	101,189				
C2-C1-C1*	90,3(4)	89,997				
C1-C2-C2*	89,7(4)	90,002				
X-ray structure is taken from Ref. 2						

IR spectrum	(cm ⁻	1)
-------------	------------------	----

Experiment	PBE/3ζ
1464	1467
1425	1433
1188	1187
770	802
762	778
746	716
710	710
612	609
574	574
560	564
551	551
548	544
527	526
480	476
449	446
419	440

Measured IR spectrum is taken from Ref. 1.

Section B. Mean polarizability and its exaltation for $(C_{20})_n$ (n = 1-4) calculated by PBE/3 ζ and RI-PBE0/A1 methods

Molecule	PBE/3ζ		RI-PBE0/A1		
molecule	α	$\Delta \alpha^{(I)} *$	α	$\Delta \alpha^{(I)} *$	
C ₂₀	27.78	_	22.45	-	
$(C_{20})_2$	58.59	3.03	47.90	3.00	
$(C_{20})_3$	92.88	9.54	78.25	10.90	
$(C_{20})_4$	129.13	18.01	105.77	15.97	

* The exaltation was calculated analogously to Equations 4 and 6:

$$\alpha_{add}^{(I)}((C_{20})_n) = n\alpha_{C_{20}}$$

 $\Delta \alpha^{(I)} = \alpha_{DFT} - \alpha^{(I)}_{add}$

$(C_{60})_n$ and related molecules				
Molecule	α_{xx} , Å ³	α _{γγ} , ų	α_{zz} , Å ³	α, Å ³
C ₆₀	82.7	82.7	82.7	82.7
(C ₆₀) ₂	150.2	151.3	238.4	180.0
e-(C ₆₀) ₃	326.7	287.4	215.1	276.4
trans 2-(C ₆₀) ₃	218.1	231.5	405.5	285.1
trans 3-(C ₆₀) ₃	216.4	253.9	376.2	282.1
trans $4-(C_{60})_3$	355.9	265.7	217.0	279.6
Cyclic (C ₆₀) ₃	206.8	317.5	318.8	281.1
Linear (C ₆₀) ₄	624.0	285.6	282.6	397.4
Cyclic (C ₆₀) ₄	431.3	429.6	268.5	376.4
T-shaped (C ₆₀) ₄	499.7	372.8	278.4	383.6
Linear (C ₆₀) ₅	831.1	352.5	348.5	510.7
"+"-shaped (C ₆₀) ₅	551.3	550.4	338.6	480.1
$C_{60}C_{60}F_{16}$	150.1	158.3	240.4	183.0
[C ₆₀ (CH ₂) ₅] ₂	172.9	172.9	252.6	199.5

Section C. Diagonalized tensors of polarizability calculated by PBE/3ζ method

C_{60} and its derivatives used for calculations in terms of additive scheme (I)

Molecule	α _{xx} , Å ³	α _{γγ} , Å ³	α_{zz} , Å ³	α, Å ³
C ₆₀	82.7	82.7	82.7	82.7
$C_{60}F_{16}$	71.9	95.2	95.2	87.4
C ₆₀ (CH ₂) ₅	88.7	95.5	95.7	93.3

Bowl-shaped hydrocarbons

Molecule	α _{xx} , Å ³	α _{γγ} , Å ³	α_{zz} , Å ³	α, Å ³
C ₂₁ H ₁₂	19.7	44.1	44.1	36.0
C ₃₀ H ₁₂	31.5	69.0	69.4	56.6
C ₃₆ H ₁₂	42.3	72.6	72.7	62.5
C ₄₂ H ₁₈	110.0	110.1	49.70	90.0
C ₅₀ H ₁₀	74.4	81.3	81.4	79.0

Dimers of bowl-shaped hydrocarbons

Molecule	α _{xx} , Å ³	α _{γγ} , Å ³	α _{zz} , Å ³	α, Å ³
(C ₂₁ H ₁₂) ₂	63.1	67.4	75.8	68.8
(C ₃₀ H ₁₂) ₂	81.9	123.5	135.0	113.3
(C ₃₆ H ₁₂) ₂	103.7	130.3	151.6	128.5
(C ₄₂ H ₁₈) ₂	136.1	202.4	209.0	182.5
(C ₅₀ H ₁₀) ₂	144.7	147.3	218.1	170.0

Molecule	α_{xx} , Å ³	α _{γγ} , Å ³	α_{zz} , Å ³	α, Å ³
$C_{60}C_{21}H_{12}$	107.3	113.9	145.0	122.1
$C_{60}C_{30}H_{12}$	126.8	137.4	172.9	145.7
$C_{60}C_{36}H_{12}$	133.3	140.8	187.3	153.8
C ₆₀ C ₄₂ H ₁₈	159.3	177.5	209.0	182.0
$C_{60}C_{50}H_{10}$	148.1	148.7	228.4	175.1

[2+2] hydrocarbon—fullerene cycloadducts