Electronic Supplementary Information

d-PET coupled ESIPT phenomenon for fluorescent turn-on detection of hydrogen sulfide

Shahi Imam Reja, Naresh Kumar, Roopali Sachdeva, Vandana Bhalla and Manoj Kumar,*

Department of Chemistry, UGC Sponsored Centre for Advanced Studies-1, Guru Nanak Dev University, Amritsar, Punjab, India. Fax: +91 (0)183 2258820; Tel: +91 (0)183 2258802 9x3205; E-mail: mksharmaa@yahoo.co.in

- S3 Instruments and Quantum yield calculation
- S4 Synthetic routes
- S5 ¹H NMR spectrum of compound 2 (15-0 ppm)
- S6 13 C NMR spectrum of compound 2
- S7 ¹H NMR spectrum of compound **2** (expanded)
- S8 Mass spectrum of compound 2
- S9 UV-vis spectra of compound **2** in the presence of H_2S and different analyte in H_2O/CH_3CN (99.5:0.5, v/v) buffered with HEPES; pH = 7.4.
- S10 Mass spectrum of product **3**
- S11 The blue shift of fluorescence emission band.
- S12 Temperature dependent fluorescence studies
- S13 Competitive fluorescence selectivity of compound 2

- S14 Calculations for detection limit and detection limit of H_2S
- S15 Procedure for test-strips studies

Instruments and quantum yield calculation

All reagents were purchased from Aldrich and were used without further purification. Acetonitrile (AR grade) was used to perform analytical studies. UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer, with a quartz cuvette (path length 1 cm). The cell holder was thermostatted at 25^oC. The fluorescence spectra were recorded with a SHIMADZU 5301 PC spectrofluorimeter. Elemental analysis was done using a Flash EA 1112 CHNS/O analyzer from Thermo Electron Corporation. ¹H spectra were recorded on a JEOL-FT NMR-AL 300 MHz spectrophotometer using CDCl₃ as solvent and tetramethylsilane as the internal standard. Data are reported as follows: chemical shift in ppm (*d*), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, br = broad singlet), coupling constants *J* (Hz), integration and interpretation. Fluorescence quantum yields¹ were determined by using optically matching solution of diphenyl anthracene ($\Phi_{\rm fr} = 0.9$ in cyclohexane) as standard at an excitation wavelength of 373 nm and quantum yield is calculated using the equation:

$$\Phi_{\rm fs} = \Phi_{\rm fr} \times \frac{1 \cdot 10^{-{\rm ArLr}}}{1 \cdot 10^{-{\rm AsLs}}} \times \frac{N_s^2}{N_r^2} \times \frac{D_s}{D_r}$$

 Φ_{fs} and Φ_{fr} are the radiative quantum yields of sample and the reference respectively, A_s and A_r are the absorbance of the sample and the reference respectively, D_s and D_s the respective areas of emission for sample and reference. L_s and L_r are the lengths of the absorption cells of sample and reference respectively. N_s and N_r are the refractive indices of the sample and reference solutions (pure solvents were assumed respectively).

¹ Deams, J. N.; Grosby, G. A. J. Phys. Chem. 1971, 75, 991.

Synthesis

Compounds 1^2 and 2^3 were synthesized according to previously reported procedures.

Scheme 1 Synthesis of compound 2.

² Mehta, B. H.; Shaikh, J. A. J. Indian Chem. Soc., 2009, 86, 624.

³ Antonov, L.; Fabian, W. M. F.; Nedeltcheva, D.; Kamounah, F. S. J. Chem. Soc., Perkin Trans. 2, 2000, 1173.

¹H NMR spectra of compound 2

¹³C NMR of compound 2

¹H NMR spectra of compound 2 (expanded)

Mass spectrum of compound 2

UV-vis spectra of compound 2 in the presence of H_2S and different analyte in H_2O/CH_3CN (99.5:0.5, v/v) buffered with HEPES; pH = 7.4.

Figure S9. UV/vis spectra of receptor **3** (5 μ M) in the presence of (A) H₂S (25 μ M); (B) other analytes (25 μ M each) in H₂O:CH₃CN (99.5:0.5, v/v) buffered with HEPES, pH = 7.4.

Mass spectrum of product 3

The blue shifting of the fluorescence emission band

Figure S11. Blue shifted fluorescence emission spectrum of receptor 2 after addition of H_2S .

Temperature dependent fluorescence studies

Figure S12. Fluorescence response of **2** (5 μ M) in H₂O:CH₃CN (99.5:0.5, v/v) buffered with HEPES in different temperature (0 C) value (λ_{ex} = 320 nm) to addition of 30 μ M H₂S at pH = 7.4. Red bars indicate the presence of H₂S and blue bars represent only free ligand **2.** Data were given after incubation with H₂S after 15 minutes.

Competitive fluorescence selectivity of compound 2

Figure S13. Competitive fluorescence selectivity of **2** (5 μ M) towards H₂S (30 μ M) in H₂O:CH₃CN (99.5:0.5, v/v) buffered with HEPES, pH = 7.4; $\lambda_{ex} = 320$ nm in the presence of other analyte (30 μ M each). Bars represent the emission intensity ratio (I/I_o) (I_o = initial fluorescence intensity at 462 nm; I = final fluorescence intensity at 462 nm after the addition of other analyte. 1, H₂S; 2, Cys; 3, H₂O₂; 4, ClO⁻; 5, TBHP; 6, F⁻; 7, Br⁻; 8, I⁻; 9, N₃⁻; 10, CN⁻; 11, AcO⁻ and 12, S₂O₃²⁻; Data were given after the incubation period of 20 minutes with appropriate analytes. Note: We are used main interfering analyte for competitive study.

Detection limit compound 2 towards H₂S

Figure S14. Figure showing the fluorescence intensity at 462 nm as a function of H_2S concentration. To determine the detection limit, fluorescence titration of compound **2** (5 μ M) with H_2S was carried and the fluorescence intensity as a function of H_2S added was then plotted. From this graph the equivalents used at which there was a sharp change in the fluorescence intensity multiplied with the concentration of receptor **2** gave the detection limit.

DL (detection limit) =
$$5 \times 10^{-6} \times 0.2 = 10 \times 10^{-7}$$

= 10×10^{-7} M

Preparation of test-strips:

We used pre-coated thin layer chromatography plate as a test-strip. At first we dipped the teststrip into the solution of compound 2 (10^{-3} M) in acetonitrile and then we took the photograph of the TLC strips under UV-lamp. The saturated solution of H₂S (10^{-4} M in distilled water) poured on the test-strip. After 20 minutes the photograph of the test-strip was taken under UV-lamp.